• Title/Summary/Keyword: Large signal stability analysis

Search Result 25, Processing Time 0.025 seconds

Resistive Current Mode Control for the Solar Array Regulator of SPACE Power System (인공위성 시스템을 위한 태양전지 전력조절기의 저항제어)

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.535-542
    • /
    • 2006
  • A large signal stability analysis of the solar array regulator system is performed to facilitate the design and analysis of a Low-Earth-Orbit satellite power system. The effective load characteristics of every controllable method in the solar array system are classified to analyze the large signal stability. Then, using the state plane analysis technique, the stability of various equilibrium points is analyzed. A nonlinear transformation algorithm, which changes the effective load characteristic of the solar array regulator as constant resistive load, is also proposed for the large signal stability. The proposed resistive current mode control system can control the solar array output for purposes such as peak power tracking control and battery charging control. For the verification of the proposed large signal analysis and resistive current mode control, a solar array regulator system consisting of two 100W parallel module buck converters has been built and tested using a real 200W solar array.

Analysis of Small Signal Stability Using Resonance Conditions (공진조건을 이용한 미소신호 안정도 해석)

  • Cho, Sung-Jin;Jang, Gil-Soo;Yoon, Tae-Woong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.11
    • /
    • pp.535-543
    • /
    • 2002
  • Modern power grids are becoming more and more stressed with the load demands increasing continually. Therefore large stressed power systems exhibit complicated dynamic behavior when subjected to small disturbance. Especially, it is needed to analyze special conditions which make small signal stability structure varied according to operating conditions. This paper shows that the relation between small signal stability structure varied according to operating conditions. This paper shows that the relation between small signal stability and operating conditions can be identified well using node-focus point and 1:1 resonance point. Also, the weak point which limits operating range is found by the analysis of resonance condition, and it is shown that reactive power compensation may solve the problem in the weak points. The proposed method is applied to test systems, and the results illustrate its capabilities.

Hessenberg Method for Small Signal Stability Analysis of Large Power Systems (대규모 전력계통의 미소신호 안정도 해석을 위한 Hessenberg법)

  • Nam, Hae-Gon;Song, Seong-Geun;Sim, Gwan-Sik;Mun, Chae-Ju;Kim, Dong-Jun;Mun, Yeong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.168-176
    • /
    • 2000
  • This paper presents the Hessenberg method, a new sparsity-based small signal stability analysis program for large interconnected power systems. The Hessenberg method as well as the Arnoldi method computes the partial eigen-solution of large systems. However, the Hessenberg method with pivoting is numerically very stable comparable to the Householder method and thus re-orthogonalization of the krylov vectors is not required. The fractional transformation with a complex shift is used to compute the modes around the shift point. If only the dominant electromechanical oscillation modes are of concern, the modes can be computed fast with the shift point determined by Fourier transforming the time simulation results for transient stability analysis, if available. The program has been successfully tested on the New England 10-machine 39-bus system and Korea Electric Power Co. (KEPCO) system in the year of 2000, which is comprised of 791-bus, 1575-branch, and 215-machines. The method is so efficient that CPU time for computing five eigenvalues of the KEPCO system is 3.4 sec by a PC with 400 MHz Pentium IIprocessor.

  • PDF

A Method to Accelerate Convergence of Hessenberg process for Small Signal Stability Analysis of Large Scale Power Systems (대규모 전력계통의 미소신호 안정도 해석을 위한 Hessenberg Process의 수렴특성 가속화 방법)

  • Song, Sung-Geun;Nam, Ha-Kon;Shim, Kwan-Shik;Moon, Chae-Ju;Kim, Yong-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.871-874
    • /
    • 1998
  • It is most important in small signal stability analysis of large scale power systems to compute only the dominant eigenvalues selectively with numerical stability and efficiency. Hessenberg process is numerically very stable and identifies the largest eigenvalues in magnitude. Hence, transformed system matrix must be used with the process. Inverse transformation with complex shift provides high selectivity centered on the shift, but does not possess the desired property of computing the dominant mode first. Thus, advantage of high selectivity of the transformation can be fully utilized only when the complex shift is given close to the dominant eigenvalues. In this paper, complex shift is determined by Fourier transforming the results of dynamic simulation with PTI's PSS/E transient simulation program. The convergence in Hessenberg process is accelerated using the iterative scheme. Overall, a numerically stable and very efficient small signal stability program is obtained. The stability and efficiency of the program has been validated against New England 10-machines 39-bus system and KEPCO system.

  • PDF

Development Of Small Signal Stablility Linear Analysis Program for Large Scale Power System. (대규모 전력계통의 미소신호 안정도 해석을 위한 선형해석 프로그램 개발)

  • Song, Sung-Geun;Nam, Ha-Kon;Shim, Kwan-Shik;Kim, Yong-Gu;Kim, Dong-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1054-1056
    • /
    • 1999
  • It is the most important in small signal stability analysis of large scale Power systems to compute only the dominant eigenvalues selectively with numerical stability and efficiency. In this Paper evoluted linear analysis program, transformed state matrix using Inverse transformation with complex shift and then Hessenberg process and iterative scheme are used to accelerate Hessenberg process, can calculate dominant eigenvalues. In this Paper, The accuracy of this Program has been validated against 4-machines 11-bus system and New England 10-machines 39-bus system. Also applied to KEPCO system - about 791-bus 250-machines 2500-branches, got 2568 order state matrix, and calculated two dominant modes. This analysis result equaled to result of EPRI's SSSP program to use commonly, and calculating time is faster.

  • PDF

Analysis of small signal stability using resonance condition (공진 조건을 이용한 미소신호 안정도 해석)

  • Cho, Sung-Jin;Jang, Gil-Soo;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.109-111
    • /
    • 2001
  • Modern power grids are becoming more and more stressed with the load demands increasing continually. Therefore large stressed power systems exhibit complicated dynamic behavior when subjected to small disturbance. Especially, it is needed to analyze special conditions which make small signal stability structure varied according to operating conditions. This paper shows that the relation between small signal stability and operating conditions can be predicted well using node-focus point and 1:1 resonance point. Also, the weak point which limits operating range can be identified by the analysis of resonance condition. The proposed method is applied to test systems, and the results illustrate its capabilities.

  • PDF

Eigenvalue Perturbation for Controller Parameter and Small Signal Stability Analysis of Large Scale Power Systems (제어기정수에 대한 고유치 PERTURBATION과 대규모 전력계통의 미소신호안정도 해석)

  • Shim, Kwan-Shik;Song, Sung-Gun;Moon, Chae-Ju;Lee, Ki-Young;Nam, Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.11
    • /
    • pp.577-584
    • /
    • 2002
  • This paper presents a novel approach based on eigenvalue perturbation of augmented matrix(AMEP) to estimate the eigenvalue for variation of controller parameter. AMEP is a useful tool in the analysis and design of large scale power systems containing many different types of exciters, governors and stabilizers. Also, it can be used to find possible sources of instability and to determine the most sensitivity parameters for low frequency oscillation modes. This paper describes the application results of AMEP algorithm with respect to all controller parameter of KEPCO systems. Simulation results for interarea and local mode show that the proposed AMEP algorithm can be used for turning controller parameter, and verifying system data and linear model.

Applications of Eigen-Sensitivity for Contingency Screening of Transient Stability in Large Scale Power Systems (대규모 전력계통의 과도안정도 상정사고 선택에 고유치감도 응용)

  • Shim, Kwan-Shik;Nam, Hae-Kon;Kim, Yong-Ku;Song, Sung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.193-196
    • /
    • 1999
  • This paper presents a new systematic contingency selection and screening method for transient stability. The variation of modal synchronizing torque coefficient(MSTC) is computed using eigen-sensitivity analysis of the electromechanical oscillation modes in small signal stability model and contingencies are ranked in decreasing order of the sensitivities of the MSTC(SMSTC). The relevant clusters are identified using the eigenvector or participating factor. The proposed algorithm is tested on the KEPCO system. Ranking obtained by the SMSTC is consistent with the time simulation results by PSS/E.

  • PDF

Effect Analysis of the Low Frequency Oscillation Mode of Inter-area System According to Load Characteristics (부하특성이 지역간 계통의 저주파 진동 모드 해석에 미치는 영향 분석)

  • Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1703-1707
    • /
    • 2008
  • Low frequency oscillation of inter-area system is important problem in power system areas because the operation conditions of power system depend on it. Generally, the analysis of the problem is used by small signal stability. Especially, the analysis results are affected by decision of load models. In this paper, the effect of the analysis results was studied according to load component characteristics. ZIP model, popular in large-scaled power system analysis, was used as the load model. Many cases were studied according to the combination of ZIP model in inter-area system.

The reduction of computer time in small-signal stability analysis in power systems : with clustering technique (전력계통의 미소신호 안정도 해석에서 계산시간 단축에 관한 연구 : 크러스터링 기법에 대하여)

  • Kwon, Sae-Hyuk;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.138-140
    • /
    • 1992
  • This paper represents how to reduce the computer time in small signal stability analysis by selecting the dominant oscillation modes with frequency of 0.5 to 1.2 Hz using the clustering technique. Clustering technique links the buses which are expected to be similar with zero-impedance lines and the voltage variations of these buses are regarded to be identical. The computer time was reduced remarkably with this technique and the effect of clustering will be powerful in the analysis of large-scale power systems.

  • PDF