• Title/Summary/Keyword: Large seed grain

Search Result 62, Processing Time 0.016 seconds

The Factors Influencing the Systemic Action of Dimethoate (O.O-dimethyl-S-(N-methylcarbamoylmethyl) phosphorodithioate) to the Rice Seeds and Phytotoxic Effects (수도종자에의 Dimethoate 침투력 및 발아저해에 관여하는 요인에 관한 연구)

  • Choi Seung Yoon
    • Korean journal of applied entomology
    • /
    • v.9 no.2
    • /
    • pp.57-74
    • /
    • 1970
  • These experiments were conducted to investigate the :actors influencing the systemic action of Dimethoate (O,O-dimethyl-S-(N-methylcarhamoylmethyl) photphorodithioate) to rice seeds and the phytotoxic effects on the seed germination. Dimethoate $(Roxion^{(R)})$ $40\%$ emulsion was used. The varieties tested were Jinheung. Nongkwang,Suwon #82, Norm #6, Paltal, Shirogane, Suseong, Pungkwang, Shin #2, Fujisaka #5, Kwanok, and Jaekeun. The permeated Dimethoate was extracted from the treated seeds by chloroform and quantities were determined by Spectrophotometer. The phytotoxicity was evaluated from the effects on the germination of the treated seeds which were kept in an incubator. The oxygen consumption was measured by Warburg Manometer at $30^{\circ}C$ for 60 minutes. Indices of KOH disintegration of seeds and chemical composition of the seeds were also determined. The results obtained were as followings; 1) The amount of permeated Dimethoate in the seeds showed remarkable differences with varieties. The amount of Dimethoate per 100 grains was greater as in the ascending order of Suseong, Kwanok, Nongkwang, Jinheung, Paltal, Fujisaka #5, Suwon #82, Norm #6, Shirogane, Shin #2, Pungkwang and Jaekeun. 2) It was observed that the total amount of Dimethoate in the seeds(mg./100 grains) were greater among the varieties with large grain than those with small grains, while reverse cases were true in the amount of Dimethoate in a gramme of seeds, probably because of the greater surface areas In a small grains for a gramme weight. 3) There was no significant correlation between the permeated amount of Dimethoate and amount of absorbed water by the seeds when the seeds were treated with $0.1\%$ Dimethoate for 24 and 48 hours. 4) The permeability of Dimethoate to seeds significantly increased in the prolonged soaking periods, higher concentration, and higher temperature. 5) When the seeds were treated with $0.1\%$ Dimethoate for 24 and 48 hours at $15^{\circ},\;20^{\circ},\; 20^{\circ},\; and \;30^{\circ}C$, the permeated amount of Dimethoate were increased at higher temperature. It seems to be that the more active penetration of Dimethoate was involved at the higher temperature. 6) The phytotoxic effects of Dinethoate on the seed germination varied with the varieties. An descending order of varietal tolerance of seeds was as followings: Jinheung, Fujisaka #5, Suwon #82, Paltal, Nongkwang, Jaekeun, Shin #2, Kwanok, Shirogane, Pungkwang, Suseong, and Norm #6. 7) There was a positive correlation between the amount of Dimethoate permeated into the seeds (mg./gram. of seeds) and phytotoxicity of seeds. 8) The Phytotoxic effects of Dimethoate showed close correlation with the degree of KOH disintegration of seeds, average germination periods, and oxygen respiration of seeds. 9) It was observed that higher protein contents of the seeds decreased the phytotoxic effects of Dimethoate. 10) Relatively high negative correlation between the degree of KOH disintegration of seeds and crude protein content of the seeds was observed. 11) The average germination period was delayed for about 2 days when the seeds were treated with $0.2\%$ Dimethoate for 24 hours at $30^{\circ}C$. 12) The oxygen consumption of the seeds treated with $0.2\%$ Dimethoate for 24 hours at $30^{\circ}C$ was greatly decreased when compared with that of the normal seeds. 13) The amount of oxygen consumption of the seeds (in 24 hours after 24 hours water soaking) was negatively correlated with the average germination periods of the seeds.

  • PDF

Dressing Effect of Phosphorus Fetilizer on the Growth of Soil Improving Species (비료목생장(肥料木生長)에 미치는 인산비료(燐酸肥料)의 시비효과(施肥效果))

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.45 no.1
    • /
    • pp.26-36
    • /
    • 1979
  • Through several trials that has done for making the fertilizing-counter plan on the soil improving species, some results have been got as follows; 1. In the non-phosphorus dressing plots soil improving species have very poor survial ratio and show us to be died step by step. It may be resons that root can not make the nodule in case of non-phosphorus dressing and so tree could not absorb the nitrogen nutrient fixed by the nodule. And root competition with the weedy speces for utilizing the nutrient and oxygen in the soil could be reasons when planting in the heavy weedy rooting site. 2. Triple super phosphate, Fused Mg Phosphate and Fused super phosphate have showed the remarkable effects on the growth of soil improving species within 3rd year after planting. But Koreaan tablet fertilizer(9-12-4) for forest purpose have reacted considerably lower effect in comparision with the above powder and grain type phosphorous fertilizer. 3. In case of tablet type fertilizer tree root will have very little phosphorus absorbing surface because phosphorus can be utilized only from the tablet surface and root can not penetrate into the tablet. This my be reson to show the poor dressing reaction of tablet fertilizer but tablet fertilizer has a possibility to be utilized during long years as a sympton in photo 6. So tablet fertilizer can have a recommendation to dress much fertilizer at p]anting year and then tree root can get much more chance for absorbing the phosphorus that could keep the high survival and for utilizing it during many years without after dressing. 4. The granurar and powder type phosphate can develop the dense root mat like photo 8 because of giving the large surface for absorbing the phosphorus and weedy root can approch to the nodule for taking the nitrogen element. So this type seems to present better effect than tablet type to control the soil movement, stem weight as 200g per meter(l meter long${\times}$0.1m width). When added the lime any effect could not be found and rather give the negative effect. So Lespedeza seed sowing and phosphorus dressing system seems us to be very reasonable method for covering the raw material of basket making, fodder and fuel wood supply. 7. Fused Mg phosphate and Fused super phosphate are good fertilizer to the soil improving species and dressing more than 30g per seedling can be recommendable amount. 5. In the unproductive and dry soil with phosphorus fertilizer Robinia pseudoacacia and Alnus firnui can grow more than 2.3m in height at 3rd year and Alnus inokumae have the rapid height growth that is more than 1.8m at 2nd year. Depending on the growth situation like the above example minirotated management has possibilities and rapid covering of erosed land can be done with the soil improving species and phosphorus fertilizer. 6. In the Lespedeza sowing plot with 40g Fused Mg phosphate dressing per meter in the eroded and unproductive forest soil Lespedeza have completely covered this poor land and produced the green.

  • PDF