• Title/Summary/Keyword: Large scale sensor network

Search Result 126, Processing Time 0.047 seconds

Role-based Self-Organization Protocol of Clustering Hierarchy for Wireless Sensor Networks (무선 센서 네트워크를 위한 계층형 클러스터링의 역할 기반 자가 구성 프로토콜)

  • Go, Sung-Hyun;Kim, Hyoung-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.137-145
    • /
    • 2008
  • In general, a large-scale wireless sensor network(WSNs) is composed of hundreds of or thousands of sensor nodes. In this large-scale wireless sensor networks, it is required to maintain and manage the networks to lower management cost and obtain high energy efficiency. Users should be provided with sensing service at the level of quality for users through an efficient system. In evaluating the result data quality provided from this network to users, the number of sensors related to event detection has an important role. Accordingly, the network protocol which can provide proper QoS at the level of users demanding quality should be designed in a way such that the overall system function has not to be influenced even if some sensor nodes are in error. The energy consumption is minimized at the same time. The protocol suggested in this article is based on the LEACH protocol and is a role-based self-Organization one that is appropriate for large-scale networks which need constant monitoring.

  • PDF

Optimal-synchronous Parallel Simulation for Large-scale Sensor Network (대규모 센서 네트워크를 위한 최적-동기식 병렬 시뮬레이션)

  • Kim, Bang-Hyun;Kim, Jong-Hyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.5
    • /
    • pp.199-212
    • /
    • 2008
  • Software simulation has been widely used for the design and application development of a large-scale wireless sensor network. The degree of details of the simulation must be high to verify the behavior of the network and to estimate its execution time and power consumption of an application program as accurately as possible. But, as the degree of details becomes higher, the simulation time increases. Moreover, as the number of sensor nodes increases, the time tends to be extremely long. We propose an optimal-synchronous parallel discrete-event simulation method to shorten the time in a large-scale sensor network simulation. In this method, sensor nodes are partitioned into subsets, and each PC that is interconnected with others through a network is in charge of simulating one of the subsets. Results of experiments using the parallel simulator developed in this study show that, in the case of the large number of sensor nodes, the speedup tends to approach the square of the number of PCs participating in the simulation. In such a case, the ratio of the overhead due to parallel simulation to the total simulation time is so small that it can be ignored. Therefore, as long as PCs are available, the number of sensor nodes to be simulated is not limited. In addition, our parallel simulation environment can be constructed easily at the low cost because PCs interconnected through LAN are used without change.

Weighted Neighbor-node Distribution Localization for Large-scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 이웃 노드 분포를 이용한 분산 위치인식 기법 및 구현)

  • Lee, Sang-Hoon;Lee, Ho-Jae;Lee, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.255-256
    • /
    • 2008
  • Distributed localization algorithms are required for large-scale wireless sensor network applications. In this paper, we introduce an efficient algorithm, termed weighted neighbor-node distribution localization(WNDL), which emphasizes simple refinement and low system-load for low-cost and low-rate wireless sensors. We inspect WNDL algorithm through MATLAB simulation.

  • PDF

Implementation of the web based environment monitoring system supporting the NMS protocol (NMS를 지원하는 웹기반 환경 감시 시스템의 구현)

  • Bae, Kwang-Jin;Yim, Kang-Bin
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.831-832
    • /
    • 2006
  • In this paper, we introduce a canonical framework of the large-scaled web-based sensor gateway and practically implement it as the environment monitoring system. The system consists of a central management server, up to 250 local embedded subsystems and up to 250 sensor or actuator nodes for each subsystem. The node information is gathered periodically through a well-defined protocol on the sensor network and converted to the web contents and the SNMP MIB objects according to its data type. The MIB objects are well-defined and include system, network, sensor, actuator and alarm specific data classes. Because there is an increasing trend that a large number of sites are willing to adapt unmanned sensing and control, the developed system will play a key role to efficiently manage a large scale sensor networked system such as environment monitoring systems or countermeasure systems against disaster and calamities.

  • PDF

The Design of mBodyCloud System for Sensor Information Monitoring in the Mobile Cloud Environment

  • Park, Sungbin;Moon, Seok-Jae;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, introduced a cloud computing technology to the IT industry, smart phones, it has become possible connection between mobility terminal such as a tablet PC. For dissemination and popularization of movable wireless terminal, the same operation have focused on a viable mobile cloud in various terminal. Also, it evolved Wireless Sensor Network(WSN) technology, utilizing a Body Sensor Network(BSN), which research is underway to build large Ubiquitous Sensor Network(USN). BSN is based on large-scale sensor networks, it integrates the state information of the patient's body, it has been the need to build a managed system. Also, by transferring the acquired sensor information to HIS(Hospital Information System), there is a need to frequently monitor the condition of the patient. Therefore, In this paper, possible sensor information exchange between terminals in a mobile cloud environment, by integrating the data obtained by the body sensor HIS and interoperable data DBaaS (DataBase as a Service) it will provide a base of mBodyCloud System. Therefore, to provide an integrated protocol to include the sensor data to a standard HL7(Health Level7) medical information data.

Clustering Algorithm of Hierarchical Structures in Large-Scale Wireless Sensor and Actuator Networks

  • Quang, Pham Tran Anh;Kim, Dong-Seong
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.473-481
    • /
    • 2015
  • In this study, we propose a clustering algorithm to enhance the performance of wireless sensor and actuator networks (WSANs). In each cluster, a multi-level hierarchical structure can be applied to reduce energy consumption. In addition to the cluster head, some nodes can be selected as intermediate nodes (INs). Each IN manages a subcluster that includes its neighbors. INs aggregate data from members in its subcluster, then send them to the cluster head. The selection of intermediate nodes aiming to optimize energy consumption can be considered high computational complexity mixed-integer linear programming. Therefore, a heuristic lowest energy path searching algorithm is proposed to reduce computational time. Moreover, a channel assignment scheme for subclusters is proposed to minimize interference between neighboring subclusters, thereby increasing aggregated throughput. Simulation results confirm that the proposed scheme can prolong network lifetime in WSANs.

An Energy Efficient Group-Based Cluster Key Management for Large Scale Sensor Networks (대규모 센서 네트워크에서 그룹을 기반으로 한 에너지 효율적인 클러스터키 관리 방안)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5487-5495
    • /
    • 2012
  • The important issue that applies security key are secure rekeying, processing time and cost reduction. Because of sensor node's limited energy, energy consumption for rekeying affects lifetime of network. Thus it is necessary a secure and efficient security key management method. In this paper, I propose an energy efficient group-based cluster key management (EEGCK) in the large scale sensor networks. EEGCK uses five security key for efficient key management and different polynomial degree using security fitness function of sector, cluster and group is applied for rekeying and security processing. Through both analysis and simulation, I also show that proposed EEGCK is better than previous security management method at point of network energy efficiency.

RDFS Rule based Parallel Reasoning Scheme for Large-Scale Streaming Sensor Data (대용량 스트리밍 센서데이터 환경에서 RDFS 규칙기반 병렬추론 기법)

  • Kwon, SoonHyun;Park, Youngtack
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.686-698
    • /
    • 2014
  • Recently, large-scale streaming sensor data have emerged due to explosive supply of smart phones, diffusion of IoT and Cloud computing technology, and generalization of IoT devices. Also, researches on combination of semantic web technology are being actively pushed forward by increasing of requirements for creating new value of data through data sharing and mash-up in large-scale environments. However, we are faced with big issues due to large-scale and streaming data in the inference field for creating a new knowledge. For this reason, we propose the RDFS rule based parallel reasoning scheme to service by processing large-scale streaming sensor data with the semantic web technology. In the proposed scheme, we run in parallel each job of Rete network algorithm, the existing rule inference algorithm and sharing data using the HBase, a hadoop database, as a public storage. To achieve this, we implement our system and evaluate performance through the AWS data of the weather center as large-scale streaming sensor data.

Multi-Collector Control for Workload Balancing in Wireless Sensor and Actuator Networks

  • Han, Yamin;Byun, Heejung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.3
    • /
    • pp.113-117
    • /
    • 2021
  • The data gathering delay and the network lifetime are important indicators to measure the service quality of wireless sensor and actuator networks (WSANs). This study proposes a dynamically cluster head (CH) selection strategy and automatic scheduling scheme of collectors for prolonging the network lifetime and shorting data gathering delay in WSAN. First the monitoring region is equally divided into several subregions and each subregion dynamically selects a sensor node as CH. These can balance the energy consumption of sensor node thereby prolonging the network lifetime. Then a task allocation method based on genetic algorithm is proposed to uniformly assign tasks to actuators. Finally the trajectory of each actuator is optimized by ant colony optimization algorithm. Simulations are conducted to evaluate the effectiveness of the proposed method and the results show that the method performs better to extend network lifetime while also reducing data delay.

Scalable and Robust Data Dissemination Scheme for Large-Scale Wireless Sensor Networks (대규모 무선 센서 네트워크를 위한 확장성과 강건성이 있는 데이터 전송 방안)

  • Park, Soo-Chang;Lee, Eui-Sin;Park, Ho-Sung;Lee, Jeong-Cheol;Oh, Seung-Min;Jung, Ju-Hyun;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1359-1370
    • /
    • 2009
  • In wireless sensor networks, data dissemination is based on data-centric routing that well matches the publish/subscribe communication paradigm. The publish/subscribe paradigm requires decoupling properties: space, time, and synchronization decoupling. For large-scale applications, the three decoupling properties provide scalability and robust communication. However, existing data dissemination schemes for wireless sensor networks do not achieve full decoupling. Therefore, we propose a novel data dissemination scheme that fully accomplishes the three decoupling, called ARBIETER. ARBITER constructs an independent network structure as a logical software bus. Information interworking between publishers and subscribers is indirectly and asynchronously performed via the network structure. ARBITER also manages storage and mapping of queries and data on the structure because of supporting different time connection of publishers and subscribers. Our simulation proves ARBITER show better performance in terms of scalability, network robustness, data responsibility, mobility support, and energy efficiency.