• 제목/요약/키워드: Large scale numerical analysis

검색결과 350건 처리시간 0.02초

Prediction of dynamic behavior of full-scale slope based on the reduced scale 1 g shaking table test

  • Jin, Yong;Kim, Daehyeon;Jeong, Sugeun;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.423-437
    • /
    • 2022
  • The objective of the study is to evaluate the feasibility of the dynamic behavior of slope through both 1 g shaking table test and numerical analysis. Accelerometers were installed in the slope model with different types of seismic waves. The numerical analysis (ABAQUS and DEEPSOIL) was used to simulate 1 g shaking table test at infinite boundary. Similar Acceleration-time history, Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) were obtained, which verified the feasibility of modeling using ABAQUS and DEEPSOIL under the same size. The influence of the size (1, 2, 5, 10 and 20 times larger than that used in the 1 g shaking table test) of the model used in the numerical analysis were extensively investigated. According to the similitude law, ABAQUS was used to analyze the dynamic behavior of large-scale slope model. The 5% Damping Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) at the same proportional positions were compared. Based on the comparison of numerical analyses and 1 g shaking table tests, it was found that the 1 g shaking table test result can be utilized to predict the dynamic behavior of the real scale slope through numerical analysis.

Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow

  • Park, Sung-Woo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • 제41권4호
    • /
    • pp.559-573
    • /
    • 2012
  • An adaptive modeling and simulation technique is introduced for the effective and reliable fluid-structure interaction analysis using MSC/Dytran for large-scale complex pressurized liquid containment. The proposed method is composed of a series of the global rigid sloshing analysis and the locally detailed fluid-structure analysis. The critical time at which the system exhibits the severe liquid sloshing response is sought through the former analysis, while the fluid-structure interaction in the local region of interest at the critical time is analyzed by the latter analysis. Differing from the global coarse model, the local fine model considers not only the complex geometry and flexibility of structure but the effect of internal pressure. The locally detailed FSI problem is solved in terms of multi-material volume fractions and the flow and pressure fields obtained by the global analysis at the critical time are specified as the initial conditions. An in-house program for mapping the global analysis results onto the fine-scale local FSI model is developed. The validity and effectiveness of the proposed method are verified through an illustrative numerical experiment.

이산요소법을 이용한 수치해석에서의 상사성 이론의 적용성 검토 (Feasibility Study on Similarity Principle in Discrete Element Analysis)

  • 윤태영;박희문
    • 한국도로학회논문집
    • /
    • 제18권2호
    • /
    • pp.51-60
    • /
    • 2016
  • PURPOSES : The applicability of the mechanics-based similarity concept (suggested by Feng et al.) for determining scaled variables, including length and load, via laboratory-scale tests and discrete element analysis, was evaluated. METHODS: Several studies on the similarity concept were reviewed. The exact scaling approach, a similarity concept described by Feng, was applied in order to determine an analytical solution of a free-falling ball. This solution can be considered one of the simplest conditions for discrete element analysis. RESULTS : The results revealed that 1) the exact scaling approach can be used to determine the scale of variables in laboratory tests and numerical analysis, 2) applying only a scale factor, via the exact scaling approach, is inadequate for the error-free replacement of small particles by large ones during discrete element analysis, 3) the level of continuity of flowable materials such as SCC and cement mortar seems to be an important criterion for evaluating the applicability of the similarity concept, and 4) additional conditions, such as the kinetics of particle, contact model, and geometry, must be taken into consideration to achieve the maximum radius of replacement particles during discrete element analysis. CONCLUSIONS : The concept of similarity is a convenient tool to evaluate the correspondence of scaled laboratory test or numerical analysis to physical condition. However, to achieve excellent correspondence, additional factors, such as the kinetics of particles, contact model, and geometry, must be taken into consideration.

Deep-beams with indirect supports: numerical modelling and experimental assessment

  • Pimentel, Mario;Cachim, Paulo;Figueiras, Joaquim
    • Computers and Concrete
    • /
    • 제5권2호
    • /
    • pp.117-134
    • /
    • 2008
  • An experimental and numerical research was conducted to gain a deeper insight on the structural behaviour of deep-beams with indirect supports and to assess the size effects in the ultimate state behaviour. The experimental campaign focused on the influence of the reinforcement tie distribution height on the compression check of the support region and on the benefits of using unbonded prestressing steel. Three reduced scale specimens were tested and used to validate the results obtained with a nonlinear finite element model. As a good agreement could be found between the numerical and the experimental results, the numerical model was then further used to perform simulations in large scale deep-beams, with dimensions similar to the ones to be adopted in a practical case. Two sources of size effects were identified from the simulation results. Both sources are related to the concrete quasi-brittle behaviour and are responsible for increasing failure brittleness with increasing structural size. While in the laboratory models failure occurred both in the experimental tests as well as in the numerical simulations after reinforcement yielding, the numerically analysed large scale models exhibited shear failures with reinforcement still operating in the elastic range.

대형 풍력발전용 복합재료 블레이드의 개선된 등가 모델링 기법 (Improved Equivalent Beam Element Modeling Technique for Large Scale Wind-Turbine Composite Blade)

  • 김동현;박효근;김동만
    • 한국유체기계학회 논문집
    • /
    • 제11권4호
    • /
    • pp.32-37
    • /
    • 2008
  • In this study, we have introduced an improved equivalent modeling technique for large scale composite wind-turbine blade. Conventional or general equivalent modeling procedure may give critical error in the analysis results because of geometric coupling effects. For the analyses of structural vibration and aeroelastic problems, the accuracy of equivalent structural models is very important since it can have high numerical efficiency and various practical applications. Three-dimensional realistic composite wind-turbine blade model is practically considered for numerical study. In order to validate the effect of the mass and the stiffness of the equivalent beam model, comparison study based on the natural vibration analysis has been conducted, and the accuracy levels of the conventional and modified equivalent modeling techniques are presented.

Performance analysis of large-scale MIMO system for wireless backhaul network

  • Kim, Seokki;Baek, Seungkwon
    • ETRI Journal
    • /
    • 제40권5호
    • /
    • pp.582-591
    • /
    • 2018
  • In this paper, we present a performance analysis of large-scale multi-input multi-output (MIMO) systems for wireless backhaul networks. We focus on fully connected N nodes in a wireless meshed and multi-hop network topology. We also consider a large number of antennas at both the receiver and transmitter. We investigate the transmission schemes to support fully connected N nodes for half-duplex and full-duplex transmission, analyze the achievable ergodic sum rate among N nodes, and propose a closed-form expression of the achievable ergodic sum rate for each scheme. Furthermore, we present numerical evaluation results and compare the resuts with closed-form expressions.

J-integral and fatigue life computations in the incremental plasticity analysis of large scale yielding by p-version of F.E.M.

  • Woo, Kwang S.;Hong, Chong H.;Basu, Prodyot K.
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.51-68
    • /
    • 2004
  • Since the linear elastic fracture analysis has been proved to be insufficient in predicting the failure of strain hardening materials, a number of fracture concepts have been studied which remain applicable in the presence of plasticity near a crack tip. This work thereby presents a new finite element model to predict the elastic-plastic crack-tip field and fatigue life of center-cracked panels(CCP) with ductile fracture under large-scale yielding conditions. Also, this study has been carried out to investigate the path-dependence of J-integral within the plastic zone for elastic-perfectly plastic, bilinear elastic-plastic, and nonlinear elastic-plastic materials. Based on the incremental theory of plasticity, the p-version finite element is employed to account for the accurate values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ${\Delta}J$ for ${\Delta}K$. The experimental fatigue test is conducted with five CCP specimens to validate the accuracy of the proposed model. It is noted that the relationship between the crack length a and ${\Delta}K$ in LEFM analysis shows a strong linearity, on the other hand, the nonlinear relationship between a and ${\Delta}J$ is detected in EPFM analysis. Therefore, this trend will be depended especially in the case of large scale yielding. The numerical results by the proposed model are compared with the theoretical solutions in literatures, experimental results, and the numerical solutions by the conventional h-version of the finite element method.

순환유동층보일러 외부열교환기의 열전달 특성에 관한 수치해석적 연구 (A Numerical Study of the Characteristics of Heat Transfer in External Heat Exchanger of CFB Boiler)

  • 황문경;김정래
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.15-16
    • /
    • 2014
  • With the increasing trend in CFB(Circulating Fluidized Bed) boiler scale, the EHE(External Heat Exchanger) must be adopted to the large-scale boilers to recover insufficient heat transfer surface. In this study, the numerical analysis model for EHE in commercial 300MWe CFB boiler was developed with the inclusion of mechanistic model, which enables the heat transfer prediction. Finally, the calculated absorbed heat and derived heat transfer coefficient are evaluated through the verification with experimental data.

  • PDF

$\rho$-Version 유한요소법에 의한 균열판의 소성역 형상과 J-적분값 산정 (The Values of J-integral and Shapes of Plastic Zone Near a Crack Tip of Cracked Panels by the $\rho$-Version of F.E.M.)

  • 홍종현;우광성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.42-49
    • /
    • 1999
  • Because the linear elastic tincture analysis has been proved to be insufficient in predicting the failure of cracked bodies, in recent years, a number of fracture concepts have been studied which remain applicable in the presence of large-scale plasticity near a crack tip. This work thereby presents a new finite element model, as accurate as possible, to analyze plane problems of ductile fracture under large-scale yielding conditions. Based on the incremental theory of plasticity, the p-version finite element analysis is employed to account for the values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method and equivalent domain integral method. The numerical results by the proposed model are compared with the theoretical solutions in literatures and the numerical solutions by the i,-version of F.E.M.

  • PDF

NNDI decentralized evolved intelligent stabilization of large-scale systems

  • Chen, Z.Y.;Wang, Ruei-Yuan;Jiang, Rong;Chen, Timothy
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.1-15
    • /
    • 2022
  • This article focuses on stability analysis and fuzzy controller synthesis for large neural network (NN) systems consisting of several interconnected subsystems represented by the NN model. Advanced and fuzzy NN differential inclusion (NNDI) for stability based on the developed algorithm with H infinity can be designed based on the evolved biological design. This representation is constructed using sector linearity for NN models. Sector linearity transforms a non-linear model into a linear model based on proposed operations. New sufficient conditions are realized in the form of LMI (linear matrix inequalities) to ensure the asymptotic stability of the trans-Lyapunov function. This transforms the nonlinear model into a linear model based on multiple rules. At last, a numerical case study with simulations is derived as illustration to prove its feasibility in real nonlinear structures.