• Title/Summary/Keyword: Large generator

Search Result 630, Processing Time 0.034 seconds

Effective Heat Transfer Using Large Scale Vortices (대와류를 이용한 채널 내 열전달 증진)

  • Yoon, Dong-Hyeog;Choi, Choon-Bum;Lee, Kyong-Jun;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.198-206
    • /
    • 2008
  • A numerical study has been carried out to investigate heat transfer enhancement in channel flow using large-scale vortices. A square cylinder, inclined with respect to the main flow direction, is located at the center of the channel flow, generating a separation region and Karman vortices. Two cases are considered; one with a fixed blockage ratio and the other one with a fixed cylinder size. In both cases, the flow characteristics downstream of the cylinder significantly change depending on the inclination angle. As a result, heat transfer from channel wall is significantly enhanced due to increased vertical-velocity fluctuations induced by the large-scale vortices shed from the cylinder. Quantitative results as well as qualitative physical explanation are presented to justify the effectiveness of the inclined square cylinder as a vortex generator to enhance heat transfer from channel wall.

The Development of Automatic Voltage Regulation Using DSP for the Small and Middle Generator (DSP를 사용한 중소형 발전기 자동전압 조정기 개발)

  • 임익헌;류호선;이주현;이재도;송성일
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.305-309
    • /
    • 2003
  • In recent large power plants, the excitation system has the static type, which is characterized by the fast response to increase the transient stability. The high capacity excitation systems developed in KEPRI is either a hot back-up, hybrid hot back-up (analog + digital) or triple modular redundant digital type, both well proven by actual tests and applied in commercial operation. The large excitation systems have been developed taking into consideration the parameters of large scale power plants, resulting in high costs and subsequently are supplied at higher prices. When used at small sized power plants, the cost impact is relatively high. As a countermeasure to such a situation, KEPRI has recently developed a reliable, miniature digital excitation system, which is one-board type, convenient and adequate for low-price, small-sized (0.5MW∼200MW) power plants.

  • PDF

Structural Safety in Installation System for Monopile Basic Construction of Offshore Wind Power Generators (해상풍력발전기 모노파일 기초공사용 설치시스템 구조 안전성)

  • Cha, Tae-Hyeong;Chung, Won-Jee;Lee, Hyun-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Recently, the development of offshore wind farms based on past technical experiences from onshore wind turbine installations has become a worldwide issue. This study investigated the technical issues related to offshore wind farms and large-diameter monopiles from an economic perspective. In particular, the monopile foundation system (MFS), which is the most important part of the proposed fast construction system, is applied for the first time in Korea, and structural verification is essential because it supports large-diameter monopiles and is in charge of excavation. Therefore, in this study, a rapid construction system for large offshore wind power generators was introduced, and stability verification was performed through the structural analysis of the MFS.

Duplex Pulse Frequency Modulation Mode Controlled Series Resonant High Voltage Converter for X-Ray Power Generator

  • Chu Enhui;Ogura Koki;Moisseev Serguei;Okuno Atsushi;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.295-300
    • /
    • 2001
  • A variety of high voltage DC power supplies employing the high frequency inverter are difficult to achieve soft switching considering a quick response and no overshoot response under the wide load variation ranges which are used in medical-use x-ray high voltage generator from 20kV to 150kV in the output voltage and from 0.5mA to 1250mA, respectively. The authors develops soft switching high voltage DC power supply designed for x-ray power generator applications, which uses series resonant inverter circuit topology with a multistage voltage multiplier instead of a conventional high voltage diode rectifier connected to the second-side of a high-voltage transformer with a large turn ratio. A constant on-time dual mode frequency control scheme operating under a principle of zero-current soft switching commutation is described. Introducing the multistage voltage multiplier, the secondary transformer turn-numbers and stray capacitance of high-voltage transformer is effective to be greatly reduced. It is proved that the proposed high-voltage converter topology with dual mode frequency modulation mode control scheme is able to be the transient response and steady-state performance in high-voltage x-ray tube load. The effectiveness of this high voltage converter is evaluated and discussed on the basis of simulation analysis and observed data in experiment.

  • PDF

A study on improvement of the control performance of the automatic voltage regulator of a brushless synchronous generator (브러쉬리스 동기발전기 자동전압조정기의 제어성능 향상을 위한 연구)

  • Lee, Youngchan;Kim, Jongsu;Jung, Byung-Gun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.909-915
    • /
    • 2014
  • Terminal voltage of the Automatic Voltage Regulator(AVR) of brushless synchronous generator is generally being controlled by PID Control way in shore and ship field. However, in case of changeable large load on power system, PID control method is deficiency to respond output voltage with settling time. Hence, taking into consideration this situation, it is required new control method. In this thesis, we propose Fuzzy Logic Control(FLC) which has more optimal robust control way in order to respond varying values of terminal voltage to the brushless synchronous generator through simulation of MATLAB/SIMULINK and prove Fuzzy logic control more optimal compared with PID control.

Fundamental Study for Ocean Wave Energy Converter Using a Rack-Pinion Gear Based One-way Mechanism (일방향 기구 기반 랙-피니언 기어를 이용한 병진형 파력발전장치에 대한 기초연구)

  • Lee, Junkyoung;Cho, Sungil;Lee, Sehan;Lee, Sangchun;No, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.167.1-167.1
    • /
    • 2011
  • Sustainable energy generation is becoming extremely imperative due to the expected limitations in current energy resources and to reduce pollution. Especially, because of its considerable energy potential, ocean wave energy has been investigated with regard to power generation. To develop large high power wave generator system, it is important to make a small scale proto type and to test that. Thus the objective of this research is to examine the characteristics of a mechanically excited generator system having small power capacity experimentally. The water reservoir (4 m length, 1.5 m width and 1.8 m depth) having a wave maker to make arbitrary height and period of the water wave was made. The proto type consists of three main parts; a buoy, rack-pinion base one-way mechanism, and a wave generator(Fig.1). The water wave is going up and down and the hexahedron buoy is following the wave. The rack gear attached to the buoy is also going up and down to roll the pinion connected to an electric generator then it produces electricity. The experiments were performed with several conditions of water waves, and the power outputs over 30 W could be measured for some conditions. In future works, to achieve higher performance for the proto type, the effects of primary parameters (buoy shape and mass, etc.) on the system efficiency will be identified.

  • PDF

Comparison on Recent Metastability and Ring-Oscillator TRNGs (최신 준안정성 및 발진기 기반 진 난수 발생기 비교)

  • Shin, Hwasoo;Yoo, Hoyoung
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.543-549
    • /
    • 2020
  • As the importance of security increases in various fields, research on a random number generator (RNG) used for generating an encryption key, has been actively conducted. A high-quality RNG is essential to generate a high-performance encryption key, but the initial pseudo-random number generator (PRNG) has the possibility of predicting the encryption key from the outside even though a large amount of hardware resources are required to generate a sufficiently high-performance random number. Therefore, the demand of high-quality true random number generator (TRNG) generating random number through various noises is increasing. This paper examines and compares the representative TRNG methods based on metastable-based and ring-oscillator-based TRNGs. We compare the methods how the random sources are generated in each TRNG and evaluate its performances using NIST SP 800-22 tests.

The Research on the Yeonggwang Offshore Wind Farm Generated Energy Prediction (영광 해상풍력단지 발전량 예측에 관한 연구)

  • Jeong, Moon-Seon;Moon, Chae-Joo;Jeong, Gwan-Seong;Choi, Man-Soo;Jang, Yeong-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.33-41
    • /
    • 2012
  • As the wind farms in large scale demand enormous amount of construction cost, minimizing the economic burden is essential and also it is very important to measure the wind resources and forecast annual energy production correctly to judge the economic feasibility of the proposed site by way of installing a Met mast at or nearby the site. Wind resources were measured by installing a 80[m] high Met mast at WangdeungYeo Island to conduct the research incorporated in this paper and offshore wind farm was designed using WindPRO. Wind farm of 100[MW] was designed making use of 3 and 4.5[MW] wind generator at the place selected to compare their annual energy production and capacity factor applying the loss factor of 10[%] and 20[%] respectively to each farm. As a result, 336,599[MWh] was generated by applying 3[MW] wind generator while 358,565 [MWh] was produced by 4.5[MW] wind generator. Difference in the energy production by 3[MW] generator was 33,660 [MWh] according to the loss factor with the difference in its capacity factor by 3.8[%]. On the other hand, 23 units of 4.5 [MW] wind generators showed the difference of annual energy production by 35,857 [MWh] with 4.0[%] capacity factor difference.

Capacity Credit and Reasonable ESS Evaluation of Power System Including WTG combined with Battery Energy Storage System (에너지저장장치와 결합한 WTG를 포함하는 전력계통의 Capacity Credit 평가 및 ESS 적정규모 평가방안)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.923-933
    • /
    • 2016
  • This paper proposes a new method for evaluating Effective Load Carrying Capability(ELCC) and capacity credit(C.C.) of power system including Wind Turbine Generator(WTG) combined with Battery Energy Storage System(BESS). WTG can only generate electricity power when the fuel(wind) is available. Because of fluctuation of wind speed, WTG generates intermittent power. In view point of reliability of power system, intermittent power of WTG is similar with probabilistic characteristics based on power on-off due to mechanical availability of conventional generator. Therefore, high penetration of WTG will occur difficulties in power operation. The high penetration of numerous and large capacity WTG can make risk to power system adequacy, quality and stability. Therefore, the penetration of WTG is limited in the world. In recent, it is expected that BESS installed at wind farms may smooth the wind power fluctuation. This study develops a new method to assess how much is penetration of WTG able to extended when Wind Turbine Generator(WTG) is combined with Battery Energy Storage System(BESS). In this paper, the assessment equation of capacity credit of WTG combined with BESS is formulated newly. The simulation program, is called GNRL_ESS, is developed in this study. This paper demonstrates a various case studies of ELCC and capacity credit(C.C.) of power system containing WTG combined with BESS using model system as similar as Jeju island power system. The case studies demonstrate that not only reasonable BESS capacity for a WTG but also permissible penetration percent of WTG combined with BESS and reasonable WTG capacity for a BESS can be decided.

A Study on the Wave Generating Characteristics of the Multi-directional Irregular Wave Basin (다방향불규칙파 조파수조의 조파특성에 관한 연구)

  • SOHN Byung-Kyu;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.705-712
    • /
    • 2001
  • It is of great importance to represent the directional ocean waves in a laboratory basin for hydraulic model tests. The directional ocean waves can be expressed as a linear superposition of a large number of component waves with different frequencies and propagating directions. The aim of the study is to check the wave generating characteristics by serpent-type wave generating system in PKNU (Pukyong National University) which is composed of 10 piston-type wave generators. In the experiment, spatial variation of irregular wave heights and propagating angles are measured in the multi-directional wave maker basin. Target wave directional spectrum is reproduced in the area of multi-directional wave maker basin. The directional spreading of the generated waves varied spacially in the basin. They differed from target spectrum as the measurement point becomes far from the center line normal to the generator face, The effective generation area where that target can be reproduced is limited to the triangular area attached the generator face. According to the results, it is emphasized that the effective experiment area in the basin considered wave generator characteristics should be determined in consideration of experimental conditions including structural shapes, water depth, wave directionality etc.

  • PDF