• Title/Summary/Keyword: Large diameter-long pile

Search Result 13, Processing Time 0.024 seconds

A Case Study on the Dynamic Loading Tests of Large Diameter - Long Drilled Shafts into Weathered Rock (풍화암에 근입된 장대 현장타설말뚝의 동재하시험 사례연구)

  • Seok, Jeong-Woo;Cho, Chun-Whan;Ji, Wan-Goo;Park, Min-Cheul;Yoon, Jeoung-Seob
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.486-493
    • /
    • 2006
  • This paper deals with the procedure and the results on the dynamic loading tests of two large diameter - long drilled shafts (diameter=2.0m, length=75m) which were embedded into weathered rocks through thick soft marine clays and sandy gravels. Prior to the real dynamic loading test, the numerical simulation for the test procedure was performed to check the structural stability of the main pile body using equivalent static elastic analysis and the application of the hammer system using WEAP (Wave Equation Analysis of Pile Driving). Through these preliminary analyses the dynamic loading tests on large diameter - long drilled shafts have been successfully achieved.

  • PDF

Bearing capacity of large diameter PHC pile and large diameter composite pile (대구경 PHC말뚝 및 대구경 복합말뚝($\phi$1,000mm) 지지력 산정에 관한 연구)

  • Shin, Yun-Sup;Park, Jae-Hyun;Hwang, Ui-Seong;Cho, Sung-Han;Chung, Moon-Kyung;Lee, Jin-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.351-359
    • /
    • 2010
  • Large PHC piles with a diameter of 1,000mm or larger were recently introduced for the first time in Korea. This paper presents full-scale static and dynamic pile load tests performed on two 1,000mm PHC piles and two composite piles with steel pipe piles of the same diameter in the upper portion, installed by driving and pre-boring. The objectives of the tests include evaluating pile drivability, load-settlement relation, allowable bearing capacity, and the stability of mechanical splicing element for the composite pile(a.k.a. non-welding joint). The performance of the large diameter PHC piles were thought to be satisfactory compared to that of middle sized PHC piles with a long history of successful applications in the domestic and foreign markets.

  • PDF

Effect of slope with overburden layer on the bearing behavior of large-diameter rock-socketed piles

  • Xing, Haofeng;Zhang, Hao;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.389-397
    • /
    • 2021
  • Pile foundation is a typical form of bridge foundation and viaduct, and large-diameter rock-socketed piles are typically adopted in bridges with long span or high piers. To investigate the effect of a mountain slope with a deep overburden layer on the bearing characteristics of large-diameter rock-socketed piles, four centrifuge model tests of single piles on different slopes (0°, 15°, 30° and 45°) were carried out to investigate the effect of slope on the bearing characteristics of piles. In addition, three pile group tests with different slope (0°, 30° and 45°) were also performed to explore the effect of slope on the bearing characteristics of the pile group. The results of the single pile tests indicate that the slope with a deep overburden layer not only accelerates the drag force of the pile with the increasing slope, but also causes the bending moment to move down owing to the increase in the unsymmetrical pressure around the pile. As the slope increases from 0° to 45°, the drag force of the pile is significantly enlarged and the axial force of the pile reduces to beyond 12%. The position of the maximum bending moment of the pile shifts downward, while the magnitude becomes larger. Meanwhile, the slope results in the reduction in the shaft resistance of the pile, and the maximum value at the front side of the pile is 3.98% less than at its rear side at a 45° slope. The load-sharing ratio of the tip resistance of the pile is increased from 5.49% to 12.02%. The results of the pile group tests show that the increase in the slope enhances the uneven distribution of the pile top reaction and yields a larger bending moment and different settlements on the pile cap, which might cause safety issues to bridge structures.

Analysis of the lateral displacement to the Large Diameter Bored Pile based on the application of the Lateral coefficient of subgrade reaction (수평지반반력계수에 따른 대구경 현장타설말뚝의 수평변위 분석)

  • Chae, Young-Su;Kim, Nam-Ho;Bang, Ei-Souk;Lee, Kyoung-Jea
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.528-535
    • /
    • 2005
  • Using the case of design to the Large diameter Bored Pile, We showed the various method to estimate the Lateral coefficient of subgrade reaction and analyzed the lateral displacement behavior according to the characteristics of sub layer distribution. According to the study, Mutual relation to the N value and the soil modulus of deformation showed 400N to 800N to the fine grained soil and weathered soil. It showed simular tendancy with the proposed expression of Schmertmann. But Weathered rock was over estimated as 4,200N. $k_h$ to the sedimentory soil and weathered rock each showed these orded of Schmertmann-PMT-2,800N and Schmertmann-2,800N-PMT. As the factor($\alpha$) 4 was applied to the estimation in weathered rock, $k_h$ to the PMT was calculate as a big value. If the pile is long and the pile is surpported to the soil, Lateral displacement was in inverse proportion ratio to the value of $k_h$. But the case of shallow soil layer(early bedrock) and the short pile, Lateral displacement was affected by the behavior of socheted pile to the bedrock not by the upper soil layer.

  • PDF

Analysis on the Rigid Connections between the Large Diameter Drilled Shaft and the Pile Cap for the Sea-Crossing Bridges with Multiple Pile Foundations (다주식 기초 해상교량에서 대구경 현장타설말뚝과 파일캡의 강결합에 대한 분석)

  • Cho, Sung-Min;Park, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.343-358
    • /
    • 2008
  • Piles of a bridge pier are connected with a column through a pile cap(footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. This difference causes a change of the design method. Connection methods between pile heads and the pile cap are divided into two groups ; rigid connections and hinge connections. KHBDC(Korea Highway Bridge Design Code) has specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However some specifications prescribe that conservative results through investigations for both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which have very good quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) are unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the very large diameter drilled shaft and the pile cap for Incheon Bridge which will the longest bridge in Korea were investigated through the full modeling for rigid connection conditions.

  • PDF

Dynamic Behavior of Large Diameter steel Pipe Piles during driving (대구경 강관말뚝의 항타시 동적 거동)

  • 이영남;이종섭
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.141-148
    • /
    • 2000
  • For the construction of 4.8km long Multi-Purpose Jamuna Bridge in Bangladesh, 2 or 3 large diameter open-ended steel pipe piles were used for the foundation of piers. A total of 123 piles were driven for 50 piers and 2 test piles from the river bed through the normally-consolidated upper sand layer and rested n top of gravel layer. Two types of piles, having 3.15 or 2.50m diameter and variable wall thickness in the range of 40 to 60mm, were driven to the depths of 69 to 74m with the rake of 6:1 by connecting 2 or 3 pieces of short piles. Dynamic pile tests were performed on 24 selected piles during pile driving and soil plug length inside the pile was also measured after driving of each short section.These piles were plugged with soil to, though slightly affected by pile diameters, about 75% of total length of pile driven. Active plug at the tip of pile contributed substantial amount of inner skin friction to the total capacity. Piles soon after driving showed a skin-friction dominant pile behaviour, tat is, 90% of total capacity being developed by skin resistance. Quakes values and Smith damping factors were almost constant regardless of pile diameters. This result reflects the influence of uniform soil condition at the site.

  • PDF

The Behavior of Large Diameter Rock Socketed Piles (암반 정착 대구경 피어기초의 거동특성에 관한 연구)

  • Kim, Tae-Hyun;Kim, Chan-Kook;Hwang, Eui-Seok;Lee, Bong-Real;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1245-1250
    • /
    • 2006
  • The rapid growth of the economy recently gas led to increasing social needs for large scaled structures, such as high-rise buildings and long span bridges. In building these large-scaled structures the trend has been to construct foundations beating on or in rock masses in order to ensure stability and serviceability of the structure under several significant loads. However. when designing the drilled shaft foundation socketed in rock masses in Korea, the bearing capacity for the pier used to be determined by using the empirical expression, which depends on the compressive strength of the rock, or presumable bearing capacity recommended on foreign references or manuals. In this study, numerical analyses are used to trace rock-socketed pile behavior and are made alike with pile load test result in field. The result of this numerical analyses study have shown that following factors have a significant influence on the load capacity and settlement of the pier. Significant influence first factor of the geometry of the socket as defined by the length to diameter ratio. Second factor of the modulus of the rock both around the socket and below the base. third factor of the condition of the end of the pier with respect to the removal of drill cuttings and other loose material from the bottom of the socket.

  • PDF

Drilled Shaft Designs and Constructions using Pile Load Tests at the Government-Financed Section of Incheon Bridge (재하시험을 활용한 인천대교 국고구간 현장타설말뚝의 설계와 시공)

  • Cho, Sung-Min;Jeon, Byeong-Seob;Chung, Il-Hwan;Choi, Go-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.562-573
    • /
    • 2006
  • Incheon Bridge which will be the world's 5th long cable-stayed bridge in 2009 has been built under the management by Korea Highway Corporation. Incheon Bridge consists of several special-featured bridges and construction sections are divided into two groups, the private investment section with the foreign concessionaire and the government-financed section. 8 pile load tests were performed to investigate the behavior of rock-embedded large-diameter drilled shafts at both sections. Among these, 4 tests at the government-financed section have been utilized to adjust the detailed designs that were carried out individually as well as to find the actual bearing capacity of the ground prior to the commencement of constructions under the joint control of all contractors. Comprehensive procedures of the design and the construction of foundations using pile load tests were introduced.

  • PDF

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations (현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석)

  • Cho, Sung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.61-73
    • /
    • 2008
  • Piles of a bridge pier are connected with the column through the pile cap (footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. Connection methods between pile heads and the pile cap are divided into two groups : rigid connections and hinge connections. Domestic design code has been specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However, some specifications prescribe that conservative results through investigations of both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which has high-quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) is unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the large diameter drilled shaft and the pile cap for Incheon Bridge which will be the longest bridge of Korea were investigated through the full modeling for rigid connection conditions.