• Title/Summary/Keyword: Large delay

Search Result 915, Processing Time 0.031 seconds

The Effect of the Number of Vibration Modes on the Application of the Location Template Matching(LTM) Method (Location Template Matching(LTM) 방법을 적용함에 있어서 진동 모드 수의 영향)

  • Shin, Kihong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.172-178
    • /
    • 2016
  • The location template matching (LTM) method is a technique of identifying an impact location on a structure, and is often applied to structural health monitoring and large scale human-computer interface (HCI) systems. The LTM method utilizes a certain measure of similarity between two time signals. The correlation coefficient is most widely used for this purpose, and the group delay based method is recently proposed to improve the accuracy of finding the best matching pair of signals. In practice, one of key essential consideration for implementing the LTM method is to guarantee that a sufficient number of vibration modes must be contained in the measured signal, and yet the lower sampling rate is needed for a real-time implementation. In this paper, the properties of correlation coefficient and group delay with respect to the number of vibration modes are investigated. A few important results are obtained through extensive computer simulations and experiments. If the number of vibration modes contained in the measured signal is more than four it is sufficient for the correlation based LTM method, while the group delay based LTM method requires smaller number of vibration modes.

Suboptimal control strategy in structural control implementation

  • Xu, J.Y.;Li, Q.S.;Li, G.Q.;Wu, J.R.;Tang, J.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.107-121
    • /
    • 2005
  • The suboptimal control rule is introduced in structural control implementation as an alternative over the optimal control because the optimal control may require large amount of processing time when applied to complex structural control problems. It is well known that any time delay in structural control implementation will cause un-synchronized application of the control forces, which not only reduce the effectiveness of an active control system, but also cause instability of the control system. The effect of time delay on the displacement and acceleration responses of building structures is studied when the suboptimal control rule is adopted. Two examples are given to show the effectiveness of the suboptimal control rule. It is shown through the examples that the present method is easy in implementation and high in efficiency and it can significantly reduce the time delay in structural control implementation without significant loss of performance.

An Algorithm for detection and Resolution of Train Conflicts Occurring Within Station (역내 열차 경합 검지 및 해소를 위한 수리 모형 및 해법)

  • Park, Bum-Hwan;Kim, Kyung-Min;Hong, Soon-Heum;Kim, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.179-185
    • /
    • 2007
  • In large station with high density traffic, trains can be hardly controlled by CTC but by station dispatcher because CTC has difficulties in monitoring all states of affairs happening within each station such as departures, arrivals of many trains from different lines and shunting of trains to move between yards and platforms, etc. Therefore the station's dispatcher has to make quick decision about how to reschedule the times and routes for all the trains scheduled within a specific time window. And such decision becomes harder when an unexpected delay occurs because a delay occurring in a train propagates other trains as time goes on. Generally, it is called the conflict detection and resolution to adjust beforehand the distorted schedule due to a delay to original schedule. Our research is different from the state of the arts in that ours determines simultaneously the routes and the times of arrival and departure of trains, although others do only the arrival and departure time of the trains without considering the alternative routes and shunting of the station. This study suggests a mathematical approach for how to detect in advance and resolve efficiently the conflicts occurring within a station and it will be shown how to reduce delay using our approach by means of analysing the schedule of ChyungRyangRi station.

Contention-based Reservation Protocol Using a Counter for Detecting a Source Conflict in WDM Single-hop Optical Network with Non-equivalent Distance

  • Sakuta, Makoto;Nishino, Yoshiyuki;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.3 no.4
    • /
    • pp.365-373
    • /
    • 2001
  • We propose a new channel reservation protocol which can reduce message delay by using a counter for detection of d source conflict in a WDM single-hop network with non-equivalent propagation delay. A source convict occurs when a source node has the right to transmit more than or equal to two messages simultaneously, which are transmitted using different wavelengths. In such a case, the source node has to newly obtain the right to transmit the message. In the proposed protocol, by using a source conflict counter a source node can detect a source conflict before a wave-length assignment is performed. Therefore, the source node can start a procedure to newly obtain the right to transmit the message which cannot be transmitted due to a source conflict. We analyse the throughput performance by taking the effect of a source conflict into account, and show that the approximate analysis and the computer simulated results are close. Also, from computer simulated results, we show that our proposed protocol can reduce mean message delay dramatically without degrading throughput performance as the offered load becomes large.

  • PDF

New Weight Generation Algorithm for Path Delay Fault Test Using BIST (내장된 자체 테스트에서 경로 지연 고장 테스트를 위한 새로운 가중치 계산 알고리듬)

  • Hur, Yun;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.72-84
    • /
    • 2000
  • The test patterns for path delay faults consist of two patterns. So in order to test the delay faults, a new weight generation algorithm that is different from the weight generation algorithm for stuck-at faults must be applied. When deterministic test patterns for weight calculation are used, the deterministic test patterns must be divided into several subsets, so that Hamming distances between patterns are not too long. But this method makes the number of weight sets too large in delay testing, and may generate inaccurate weights. In this pater, we perform fault simulation without pattern partition. Experimental results for ISCAS 89 benchmark circuits prove the effectiveness of the new weight generation algorithm proposed in this paper.

  • PDF

Performance of Multiple Order Selection Combining RAKE receiver in Multi-bandwidth CDMA System (다중 대역 확산 CDMA 시스템에서의 다중 선택 결합 RAKE 수신기의 성능 분석)

  • 권순일;홍인기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.593-601
    • /
    • 2000
  • In a multi-bandwidth CDMA system, the performance of multiple order selection combining rake receivers are analyzed according to the spreading bandwidth of the system and the delay spread of the Rayleigh fading channel. The results for various channel environments indicate a tradeoff between total received signal energy and multipath fading immunity. Increasing the occupied bandwidth of the system(wide-bandwidth spreading) gives better performance for small delay spread environments, while gathering more energy(narrow-bandwidth spreading)gives better performance for large delay spread environments. It is shown that the performance difference between low and high order selection combining grows larger as the spreading bandwidth increases. It is also noted that performance degrades by increasing the bandwidth above a certain point and the optimum spreading bandwidth for each channel environment decreases as the delay spread of the channel increases.

  • PDF

Comprehensive Performance Analysis of Interconnect Variation by Double and Triple Patterning Lithography Processes

  • Kim, Youngmin;Lee, Jaemin;Ryu, Myunghwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.824-831
    • /
    • 2014
  • In this study, structural variations and overlay errors caused by multiple patterning lithography techniques to print narrow parallel metal interconnects are investigated. Resistance and capacitance parasitic of the six lines of parallel interconnects printed by double patterning lithography (DPL) and triple patterning lithography (TPL) are extracted from a field solver. Wide parameter variations both in DPL and TPL processes are analyzed to determine the impact on signal propagation. Simulations of 10% parameter variations in metal lines show delay variations up to 20% and 30% in DPL and TPL, respectively. Monte Carlo statistical analysis shows that the TPL process results in 21% larger standard variation in delay than the DPL process. Crosstalk simulations are conducted to analyze the dependency on the conditions of the neighboring wires. As expected, opposite signal transitions in the neighboring wires significantly degrade the speed of signal propagation, and the impact becomes larger in the C-worst metals patterned by the TPL process compared to those patterned by the DPL process. As a result, both DPL and TPL result in large variations in parasitic and delay. Therefore, an accurate understanding of variations in the interconnect parameters by multiple patterning lithography and adding proper margins in the circuit designs is necessary.

Accuracy Analysis of Ionospheric Delay of Low Earth Orbit Satellites by using NeQuick G Model

  • Bak, Serim;Kim, Mingyu;Kim, Jeongrae
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.363-369
    • /
    • 2021
  • Since the Global Navigation Satellite System (GNSS) signal received from the low Earth orbit (LEO) satellite is only affected by the upper ionosphere, the magnitude of the ionospheric delay of Global Positioning System (GPS) signal received from ground user is different. Therefore, the ground-based two-dimensional ionospheric model cannot be applied to LEO satellites. The NeQuick model used in Galileo provides the ionospheric delay according to the user's altitude, so it can be used in the ionospheric model of the LEO satellites. However, the NeQuick model is not suitable for space receivers because of the high computational cost. A simplified NeQuick model with reduced computing time was recently presented. In this study, the computing time of the NeQuick model and the simplified NeQuick model was analyzed based on the GPS Klobuchar model. The NeQuick and simplified NeQuick model were applied to the GNSS data from GRACE-B, Swarm-C, and GOCE satellites to analyze the performance of the ionospheric correction and positioning. The difference in computing time between the NeQuick and simplified NeQuick model was up to 90%, but the difference in ionospheric accuracy was not as large as within 4.5%.

A Modified Klobuchar Model Reflecting Characteristics of Ionospheric Delay Error in the Korea Region

  • Dana Park;Young Jae Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2023
  • When calculating the user's position using satellite signals, the signals originating from the satellite pass through the ionosphere and troposphere to the user. In particular, the ionosphere delay error that occurs when passing through the ionosphere delays when the signal is transmitted, generating a pseudorange error and position error at a large rate. Therefore, to improve position accuracy, it is essential to correct the ionosphere layer error. In a receiver capable of receiving dual frequency, the ionosphere error can be eliminated through a double difference, but in a single frequency receiver, an ionosphere correction model transmitted from a Global Navigation Satellite System (GNSS) satellite is used. The popularly used Klobuchar model is designed to improve performance globally. As such, it does not perform perfectly in the Korea region. In this paper, the characteristics of the delay in the ionosphere in the Korean region are identified through an analysis of 10 years of data, and an improved ionosphere correction model for the Korean region is presented using the widely employed Klobuchar model. Through the proposed model, vertical position error can be improved by up to 40% relative to the original Klobuchar model in the Korea region.

A New Predictive Current Controller for a PMSM with consideration of calculation delay

  • Moon H.T.;Youn M.J.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.336-340
    • /
    • 2001
  • In a digital system, there are inevitable delays in calculations and applying the inverter output voltages to the motor terminals. Because of the delays, the conventional predictive current controller implemented in the digital system has large overshoot and large harmonics. A new predictive current controller, considering the delays, for a permanent magnet synchronous motor (PMSM) is presented. The effectiveness and feasibilities are shown by experimental results.

  • PDF