• Title/Summary/Keyword: Large deformation analysis

Search Result 936, Processing Time 0.024 seconds

FEM Analysis on Deformation Inhomogeneities Developed in Aluminum Sheets During Continuous Confined Strip Shearing (알루미늄 판재구속전단가공에서 형성되는 불균일 변형의 유한요소해석)

  • 최호준;이강노;황병복;허무영
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • The strain state during the continuous confined strip shearing (CCSS) based on ECAP was tackled by means of a two-dimensional FEM analysis. The deformation of AA 1100 sheet in the CCSS apparatus was composed of three distinct processes of rolling, bending and shearing. The pronounced difference in the friction conditions on the upper and lower roll surfaces led to the different variation of the strain component ${epsilon}_13$ throughout the thickness of the aluminum sheet. Strain accompanying bending was negligible because of a large radius of curvature. The shear deformation was concentrated at the corner of the CCSSchannel where the abrupt change in the direction of material flow occurred. The process variables involving the CCSS-die design and frictions between tools and strip influenced the evolution of shear strains during CCSS.

Large Deformational Elasto-Plastic Analysis of Space Frames Considering Finite Rotations and Joint Connection Properties (유한회전과 접합부 특성을 고려한 공간프레임의 대변형 탄소성 해석)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.597-608
    • /
    • 2009
  • In this paper, large-deformation elasto-plastic analysis of space frames that considersjoint connection properties is presented. This method is based on the large-deformation formula with finite rotation, which was developed initially for elastic systems, and is extended herein to include the elasto-plastic effect and the member joint connection properties of semi-rigid what?. The analytical method was derived from the Eulerian concept, which takes into consideration the effects of large joint translations and rotations. The localmember force-deformation relationships were obtained from the beam-column approach, and the change caused by the axial strain in the member chord lengths and flexural bowing were taken into account. The effect of the axial force of the member on bending and torsional stiffness, and on the plastic moment capacity, is included in the analysis. The material is assumed to be ideally elasto-plastic, and yielding is considered concentrated at the member ends in the form of plastic hinges. The semi-rigid properties of the member joint connection are considered based on the power or linear model. The arc length method is usedto trace the post-buckling range of the elastic and elasto-plastic problems with the semi-rigid connection. A sample non-linear buckling analysis was carried out with the proposed space frame formulations to demonstrate the potential of the developed method in terms of its accuracy and efficiency.

Transfer Length of the Soil Nail Induced by the Shear Deformation (전단변형에 따른 쏘일네일의 전이길이)

  • You, Min Ku;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.61-73
    • /
    • 2018
  • When the shear deformation occurs on the slope reinforced with soil nail, a passive earth pressure is induced on the ground around the soil nail and the increase of shear deformation causes the earth pressure variation of the ground and the deformation and member force change of the soil nail. In this study, the shear behavior of the soil nail was analyzed experimentally by inducing the shear deformation in the vertical direction of the soil nail using a large-scale direct shear test equipment and it was verified through numerical analysis. The shear test was performed on the bonded length (6D, 8D, 10D and 12D) of the soil nail separated from the shear surface. As a result, it was observed that the continuous increase of the shear deformation caused the damage of the grout and the effect according to the bonded length was analyzed. Through the model test and the numerical analysis, it was confirmed that the transfer length of the soil nail was 0.2~0.22m, which is larger than 0.1m suggested in the previous study, and the shear zone was in the range of 0.6m from the shear surface.

Multi-stage Inverse Finite Element Analysis of Multi-stage Rectangular Cup Drawing Processes with Large Aspect Ratio Considering Deformation History (변형이력을 고려한 세장비가 큰 직사각컵 성형공정의 다단계 유한요소 역해석)

  • Kim S. H.;Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.94-97
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

Behavior Analysis of Soil Nailed Wall through Large Scaled Load Test (대형파괴재하시험을 통한 쏘일네일 벽체의 거동분석)

  • Kang, Inkyu;Kwon, Youngho;Park, Shinyoung;Lee, Seunghyun;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.51-60
    • /
    • 2008
  • Soil nailing systems are generally many used to the temporary structure in underground excavations and reinforcements of slopes in Korea. However, large-scaled experimental studies related to soil nailing systems are mostly studies related to performance monitoring and field pullout tests. Specially, there are no researches related in the large scaled load tests of soil nailed walls in Korea. In this study, a case study on the large scaled load tests of soil nailed walls is introduced and the behavior characteristic of them is investigated. Also, they are proposed allowable deformation corresponding to the serviceability limit of soil nailed walls and ultimate deformation corresponding to the collapse state of the walls. These results can be applied to the maintenance management of soil nailed walls. And analysis on the required minimum factor of safety of soil nailed walls using the relation curve of load ratio and deformation ratio are carried out.

  • PDF

Large Deformation Analysis Using an Anistropic Hardening Constitutive Model : II. Analysis (비등방경화 구성모델을 이용한 대변형 해석 :II. 해석)

  • 전병곤;한성수;오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.215-228
    • /
    • 2002
  • In a companion paper. (Oh, 2002), the constitutive model, called GUX model, was implemented as a user subroutine in ABAQUS code, where the GUX model could describe the behavior of overall strain range. An accuracy analysis verified that the implicit stress integration maintained the accuracy of solutions successfully. Since the GUX model is an anistropic hardening elasto-plastic constitutive model based on total stress concept, geotechnical problems under fully drained or undrained condition can be analyzed after acquisition of stress-strain relationships from drained or undrained triaxial tests. This study includes the analyses of the stability of embankments on soft clays and weathered soils and the example of axially loaded soil-pile system. In the large deformation analyses, geometric nonlinearity was considered and the result of analyses with GUX model was compared with that of Mises model for the overall strain range behavior.

Development of Continuous Ground Deformation Monitoring System using Sentinel Satellite in the Korea (Sentinel 위성기반 한반도 연속 지반변화 관측체계 개발)

  • Yu, Jung Hum;Yun, Hye-Won
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.773-779
    • /
    • 2019
  • We developed the automatic ground deformation monitoring system using Sentinel-1 satellites which is operating by European Space Agency (ESA) for the Korea Peninsula's ground disaster monitoring. Ground deformation occurring over a long-term period are difficult to monitoring because it occurred in a wide area and required a large amount of satellite data for analysis. With the development of satellites, the methods to regularly observe large areas has been developed. These accumulated satellite data are used for time series ground displacement analysis. The National Disaster Management Research Institute (NDMI) established an automation system for all processes ranging from acquiring satellite observation data to analyzing ground displacement and expressing them. Based on the system developed in this research, ground displacement data on the Korean Peninsula can be updated periodically. In the future, more diverse ground displacement information could be provided if automated small regional analysis systems, multi-channel analysis method, and 3D analysis system techniques are developed with the existing system.

Organ Shape Modeling Based on the Laplacian Deformation Framework for Surface-Based Morphometry Studies

  • Kim, Jae-Il;Park, Jin-Ah
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Recently, shape analysis of human organs has achieved much attention, owing to its potential to localize structural abnormalities. For a group-wise shape analysis, it is important to accurately restore the shape of a target structure in each subject and to build the inter-subject shape correspondences. To accomplish this, we propose a shape modeling method based on the Laplacian deformation framework. We deform a template model of a target structure in the segmented images while restoring subject-specific shape features by using Laplacian surface representation. In order to build the inter-subject shape correspondences, we implemented the progressive weighting scheme for adaptively controlling the rigidity parameter of the deformable model. This weighting scheme helps to preserve the relative distance between each point in the template model as much as possible during model deformation. This area-preserving deformation allows each point of the template model to be located at an anatomically consistent position in the target structure. Another advantage of our method is its application to human organs of non-spherical topology. We present the experiments for evaluating the robustness of shape modeling against large variations in shape and size with the synthetic sets of the second cervical vertebrae (C2), which has a complex shape with holes.

Study on Effect of Shell Plate Deformation to Radar Cross Section of Warship (선체외판의 변형이 수상함 RCS에 미치는 영향 연구)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.509-515
    • /
    • 2011
  • The radar cross section (RCS) of warships is a crucial design factor to improve the survivability in terms of not only low observablity of the platform but also efficiency of on-board sensors and jamming devices against enemy threat. In design stage, numerical models are generated in order to quantitatively assess RCS, of which hull surfaces are modeled with the finite number of the flat plate. However, in practice, hull surfaces are permanently deformed by various kinds of loads such as winds and ocean waves faced during operations. In this paper, the effect of these shell plate deformation to RCS is numerically investigated. For this purpose, RCS calculations are carried out for various kinds of numerical models, such as single plates, dihedrals, large-sized undulate plates, and virtual warships, with some extent of permanent deformation. The results are compared with those of corresponding models without permanent deformation. It is concluded that the permanent deformation of hull surface highly influences RCS characteristics of warships, therefore they should be considered in the RCS analysis.

A Study on the Excavation Damage Zone (EDZ) under TBM Advancement Based on Large Deformation Technique (Coupled Eulerian-Lagrangian) (대변형 해석기법(Coupled Eulerian-Lagrangian Technique)을 이용한 TBM 굴착손상영역 분석)

  • Lee, Seung-Yeon;Kim, Do-Hyun;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.5-13
    • /
    • 2016
  • In this study, Coupled Eulerian-Lagrangian (CEL) analysis, which is one of the large deformation analyses, was incorporated to investigate excavation damage zone (EDZ) under TBM advancement. Considering the quasi-static condition, the dynamic analysis was performed to simulate the real TBM advancement and subsequently a case study on mesh and TBM excavation rate was carried out for satisfying a balance of accuracy and economic computational time. Based on this, a series of parametric studies were performed for different rock types and tunnel diameters. From the numerical analysis results, it is found that EDZ was taken to range within 0.4D(D=tunnel diameter) for most rocks. It is also found that the EDZ tends to increase as the tunnel diameter increases.