• Title/Summary/Keyword: Large Static Deformation

Search Result 136, Processing Time 0.025 seconds

Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation

  • Mohammed, Chatbi;Baghdad, Krour;Mohamed A., Benatta;Zouaoui R., Harrat;Sofiane, Amziane;Mohamed Bachir, Bouiadjra
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.685-697
    • /
    • 2022
  • Nanotechnology has become one of the interesting technique used in material science and engineering. However, it is low used in civil engineering structures. The purpose of the present study is to investigate the static behavior of concrete plates reinforced with silica-nanoparticles. Due to agglomeration effect of silica-nanoparticles in concrete, Voigt's model is used for obtaining the equivalent nano-composite properties. Furthermore, the plate is simulated mathematically with higher order shear deformation theory. For a large use of this study, the concrete plate is assumed resting on a Pasternak elastic foundation, including a shear layer, and Winkler spring interconnected with a Kerr foundation. Using the principle of virtual work, the equilibrium equations are derived and by the mean of Hamilton's principle the energy equations are obtained. Finally, based on Navier's technique, closed-form solutions of simply supported plates have been obtained. Numerical results are presented considering the effect of different parameters such as volume percent of SiO2 nanoparticles, mechanical loads, geometrical parameters, soil medium, on the static behavior of the plate. The most findings of this work indicate that the use of an optimum amount of SiO2 nanoparticles on concretes increases better mechanical behavior. In addition, the elastic foundation has a significant impact on the bending of concrete slabs.

The Introduction of Shaft Alignment Calculation for very Large Container Vessel (초대형 콘테이너선의 축계정렬 계산 사례 소개)

  • Kang Dong Chun;Park Kun Woo;Kim Kyoung Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.138-143
    • /
    • 2005
  • Recently, it is much more required to approach the accurate shaft alignment analysis according to the tendency of active showing in large container vessel and that of the heavy weight of propeller in connection with it. Shaft alignment calculation lies upon how the pressure apply on bearings properly in operation of main engine and how the stress of shaft puts within that of limit of bearing material and how the movement of shaft is prospected owing to propeller forces and moments. Therefore, we have conducted the shaft alignment calculation of very large container vessel considering the deformation of hull structure and the propeller forces and moments and the static and dynamic condition of shaft. The calculation results show the pressure distribution of aft bush and the movement of shaft in bearing. The shaft alignment calculation helps the stable application of shaft alignment, which was proved in sea trial.

  • PDF

Dynamic tensile behavior of SIFRCCs at high strain rates

  • Kim, Seungwon;Park, Cheolwoo;Kim, Dong Joo
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.275-283
    • /
    • 2020
  • Reinforced concrete (RC) does not provide sufficient resistance against impacts and blast loads, and the brittle structure of RC fails to protect against fractures due to the lack of shock absorption. Investigations on improving its resistance against explosion and impact have been actively conducted on high-performance fiber-reinforced cementitious composites (HPFRCCs), such as fiber-reinforced concrete and ultra-high-performance concrete. For these HPFRCCs, however, tensile strength and toughness are still significantly lower compared to compressive strength due to their limited fiber volume fraction. Therefore, in this study, the tensile behavior of slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs), which can accommodate a large number of steel fibers, was analyzed under static and dynamic loading to improve the shortcomings of RC and to enhance its explosion and impact resistance. The fiber volume fractions of SIFRCCs were set to 4%, 5%, and 6%, and three strain rate levels (maximum strain rate: 250 s-1) were applied. As a result, the tensile strength exceeded 15 MPa under static load, and the dynamic tensile strength reached a maximum of 40 MPa. In addition, tensile characteristics, such as tensile strength, deformation capacity, and energy absorption capacity, were improved as the fiber volume fraction and strain rate increased.

Energy Exchanges and Adhesion Probability of Lennard-Jones Cluster Colliding with a Weakly Attractive Static Surface (클러스터-표면 충돌시 부착 확률과 에너지 교환에 대한 분자동력학 시물레이션)

  • Jung, Seung-Chai;Suh, Dong-Uk;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1788-1793
    • /
    • 2008
  • Classical molecular dynamics simulations (MDS) were conducted to simulate nano-sized cluster collisions with a weakly attractive static surface. Energy exchanges associated with the cluster collision and the adhesion probability are discussed. Routes of the energy exchanges and the kinetic energy loss are vastly altered in their mode according to the cluster incident velocity. In the elastic collision regime ($V_0$<0.1), most incident kinetic energy is recovered into the rebounding kinetic energy, but a little loss in the incident kinetic energy causes the cluster adhesion. Dissipated kinetic energy is converted into the rotational energy. In the weakly plastic collision regime (0.1<$V_0$<0.3), the transition from elastic to plastic collision occurs, and a large part of the released potential energy is converted into rebounding translational energy. For strongly plastic collisions ($V_0$>0.3), permanent cluster deformation occurs with extensive collapse of the lattice structure inducing a solid-to-solid phase transition; moreover, most of the cluster kinetic energy is converted into cluster potential and thermal energy.

  • PDF

Nonlinear analyses of steel beams and arches using virtual unit moments and effective rigidity

  • Koubova, Lenka;Janas, Petr;Markopoulos, Alexandros;Krejsa, Martin
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.755-765
    • /
    • 2019
  • This study examined geometric and physical nonlinear analyses of beams and arches specifically from rolled profiles used in mining and underground constructions. These profiles possess the ability to create plastic hinges owing to their robustness. It was assumed that displacements in beams and arches fabricated from these profiles were comparable with the size of the structure. It also considered changes in the shape of a rod cross-section and the nonlinearities of the structure. The analyses were based on virtual unit moments, effective flexural rigidity of used open sections, and a secant method. The use of the approach led to a solution for the "after-critical" condition in which deformation increased with decreases in loads. The solution was derived for static determinate beams and static indeterminate arches. The results were compared with results obtained in other experimental tests and methods.

Static and Natural Vibration Analyses of Bending Problems Using 5-Node Equivalent Element (5절점 상당요소에 의한 굽힘문제의 정적해석 및 자유진동해석)

  • Gwon, Young-Doo;Yun, Tae-Hyeok;Jeong, Seung-Kap;Park, Hyeon-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1320-1332
    • /
    • 1996
  • In the present study, we consider modified 5-node equivalent solid element which has smallest degree of freedom among 2-dimensional solid elements accounting bending deformation as well as extensional and shear deformations, We shall investigate static and dynamic characteristics of this element, which is very effective in thin beam, thick beam, large displacement problems, beam of variable thickness, and asymmetrically stepped beam, etc., as well as relatively simple problems of beam. The degree of freedom of this element is 10, which is smaller than 18 of 9-node element, 16 of 8-node elemtns, 12 of modified 6-node element and Q6 element. Therefore, this element is expected to broaden the effective range of application of the solid elements in the bending problems further.

Static and Dynamic Stability Estimation of Diecutter (타발기의 정적 및 동적 안정성 평가)

  • Son, Jae-Hwan;Han, Chang-Woo;Lee, Sang-Ryong;Lee, Choon-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.27-32
    • /
    • 2009
  • In this study, static and dynamic stability estimations on the diecutter with finite element modelling were carried out to be creased and cut away printed sheet exactly. To cut away the sheet exactly, the large force should be pressured on diecutter. And which affects not only the quality of produced sheets but also the stability of diecutter. The analyses with and without the tare of diecutter were carried out with NASTRAN software on applying 400 ton force to its top and moving table respectively. It was known that maximum von-Mises stress of 221 Mpa in diecutter was occurred at the toggle, and it was smaller than the yield stress of 280 Mpa. And maximum deformation of 0.75 mm was occurred at the top table. The natural frequencies of 41, 102, 108, 115, and 134 Hz for the 1st, 2nd, 3rd, 4th and 5th mode, which had been determined by numerical simulation, were not coincided with the max. speeds of motor and moving table of 29 and 2 Hz. And which was verified by vibration test. Therefore it may be estimated that the structure of the diecutter is statically and dynamically stable.

  • PDF

Dynamic Deformation Behavior of Zr-Based Bulk Amorphous Alloy after Annealing Treatments (벌크형 비정질 Zr계 합금의 결정화 열처리에 따른 동적변형 거동)

  • Chang J. J;Lee B. J;Hwang J. I;Park I. M;Cho K. M;Cho Y. R
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.181-185
    • /
    • 2004
  • The mechanical properties of a bulk amorphous alloy ($Zr_{41.2}$ $Ti_{13.8}$ /$Cu_{10}$ $Ni_{10}$ $Be_{22.5}$ /at.%) before and after an annealing treatment were investigated. For the bulk amorphous alloy, the compressive strength was about 2.0 GPa, irrespective of the strain rates in the range of $10^{-4}$ to $10^3$$ sec^{-1}$ . Fine-sized nanocrystalline particles (10~100 nm) were precipitated homogeneously in the bulk amorphous matrix after the annealing treatments. Compared to the bulk amorphous materials, these composite materials, composed of the nanocrystalline phases and a bulk amorphous matrix had much different mechanical properties. The strength and strain of coposite materials measured by a compressive test showed a peak-maximum values at 7 vol.% of the nanocrystalline phases. The values in higher volume fraction of the crystalline phases in the amorphous matrix were decreased, as measured by both quasi-static and high strain rate. The decrease in fracture strength is due to presence of the dispersed large-crystalline phases in the amorphous matrix.

A basic study on the prediction of local material behavior of composite bone plate for metaphyseal femur fractures (대퇴골 골 간단 부 골절치료용 복합재료 고정판의 국부적 거동 예측을 위한 기초 연구)

  • Yoo, Seong-Hwan;Son, Dae-Sung;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.6-11
    • /
    • 2011
  • This paper presents an estimating method for local property changes and failure prediction of composite materials experiencing large shear deformation during draping process. The bone plate for the metaphyseal femur fracture was chosen to apply the presented method because it has complex geometry. The local property changes due to macro-/microscopic deformations of fabric composites during draping process were evaluated by various tests and the result was applied to predict static/fatigue behaviors of the bone plate. This paper was expected to present useful information on the design of composite structures with complex geometry and their performance evaluation.

Grain Refinement and Microstructural Instability of an AZ31 Mg Alloy by Severe Plastic Deformation Using ECA Pressing (ECAP 강가공에 의한 마그네슘 AZ31합금의 결정립 미세화 및 미세조직 불안정성)

  • Kim, H.K.;Chung, K.;Hyun, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.3
    • /
    • pp.139-145
    • /
    • 2004
  • Equal channel angular pressing (ECAP) technique had been adapted to the Mg alloy (AZ31) for achieving effective grain refinement through severe deformation. The average grain size of $2.5{\mu}m$ could be obtained after 4 passes. The stability of the ECAPed structure at elevated temperatures was examined by annealing the ECAPed materials over a wide range of temperature between 473 and 748 K. The average activation energy, Q, for static grain growth of 1, 2 and 3 passes was 33.7 kJ/mole (=0.25QL, activation for lattice diffusion). The abnormally low Q value in the lower temperature range may indicate that grain growth occurs in the unrecrystallized microstructure where non-equilibrium grain boundaries containing a large number of extrinsic dislocations exist. The yield stresses of the ECAPed alloys decreased whereas the elongations increased after the ECAP process. These results should be related to the modification of texture for easier slip on basal plane.