• Title/Summary/Keyword: Large Space Simulator

Search Result 28, Processing Time 0.025 seconds

Thermal Shroud Design of a Large Space Simulator(${\Phi}8m{\times}L10m$) (대형우주모사장비(${\Phi}8m{\times}L10m$) 열교환 슈라우드 설계)

  • Cho, Hyok-Jin;Moon, Guee-Won;Lee, Sang-Hoon;Seo, Hee-Jun;Winter, Calvin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1236-1240
    • /
    • 2004
  • Thermal vacuum test for satellites should be performed before launch to verify the feasibility of satellites' operation in a harsh space environment which is represented as an extremely cold temperature and vacuum condition. A large space simulator(${\Phi}8m{\times}L10m$) has been demanded to accomplish the thermal vacuum test for the huge satellites designed in compliance with the national space program of Korea. In this paper, the design and calculation of thermal shroud which is the core part of large space simulator were discussed. The characteristics of the large space simulator being constructed at Korea Aerospace Research Institute(KARI) were depicted.

  • PDF

THERMAL SYSTEM DESIGN FOR A LARGE SPACE $SIMULATOR(\Phi8m\;\times\;L10m)$

  • Moon Guee-Won;Cho Chang-Lae;Cho Hyokjin;Lee Sang-Hoon;Seo Hee-Jun;Choi Seok-Weon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.281-284
    • /
    • 2004
  • According to the National Space Program of Korea, KARI (Korea Aerospace Research Institute) has been developing a large space simulator (working dimension; $\Phi8m\;\times\;L10m$) to verify the performance of future large satellites under the space environment conditions. Especially, a very low temperature condition of space will be simulated by shrouds covering the inside surface of the vessel. The surface of shrouds will be cooled down to 17K by liquid nitrogen (LN2) from ambient temperature and hence, an optimal LN2 circulation system design is necessary to remove gaseous nitrogen (GN2) sufficiently and maintain the shrouds at the LN2 temperature.

  • PDF

Implementation of Deferred NAK Mode Simulator for Large-Volume Telemetry Data Transmission in Deep Space Communication Systems (심우주 통신 시스템에서 대용량 Telemetry 데이터 전송을 위한 Deferred NAK Mode 시뮬레이터 구현)

  • Hong, Hee-Jin;Lee, Ju-Byung;Yoon, Dong-Weon;Hyun, Kwang-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.69-75
    • /
    • 2011
  • As part of its space development program, Korea has a plan for the launch of a lunar orbiter and a lunar lander. To enable the transmission of lunar information based on multimedia, it is necessary to construct a communication system that is capable of transmitting large-volume telemetry data. The CCSDS standard recommends the deferred NAK mode as ARQ scheme for reliable long-distance deep-space communication systems. In this paper, we implement a space communication system simulator in the deferred NAK mode using models of the lunar orbiter, the earth station, and the space environment. The simulator employs modulation techniques and turbo coding schemes for transmitting large-volume telemetry data. We analyze the transmission performance of telemetry data through the simulation.

Development of the Simulator for FPC-G, the Focal Plane Fine Guiding Camera for SPICA

  • Pyo, Jeonghyun;Jeong, Woong-Seob;Lee, Chol;Kim, Son-Goo;Lee, Dae-Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.76.2-76.2
    • /
    • 2013
  • SPICA(SPace Infrared Telescope for Cosmology and Astrophysics) is an infrared space observatory with cooled telescope of 3 m aperture. Because of its large aperture, near- and mid-infrared instruments onboard SPICA require fine guidance with attitude accuracy less than 0.1 arcsecond. The FPC-G is a focal plane camera to achieve this high attitude accuracy and KASI is leading its development. The SPICA project is now under the Risk Mitigation Phase 2 (RMP2) and one of major risks is to satisfy the requirement of pointing and attitude control. To assess the impacts of disturbance sources on the attitude control and devise methods to mitigate possible risks, a software simulator of the FPC-G is under the development. In this presentation, we report the status of development of the simulator and the development plan during the RMP2.

  • PDF

Trend of European Spacecraft Simulator Development (유럽 우주비행체 시뮬레이터 연구개발 동향)

  • Lee, Hoon-Hee
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.69-79
    • /
    • 2008
  • As the cost of the operational spacecraft simulator is a large portion of the spacecraft cost and its requirements increase, it is given the pressures to reduce the cost and the development period. For that reason, the space industry with the coordination of ESA has made a study of the reuse in a wide scope across space projects. Its scope includes not only simulation software itself but also software requirements, design, work experience and developing process/methodology. The standard for simulator model portability and the efficiency enhancement of the development process as a result have been successfully applied to several projects. This paper describes the recent trend of the spacecraft simulator in Europe and the present status of its the study and the development.

  • PDF

A Team-based Firefighter Training Simulator for Complex Buildings (대형 복합건물을 대상으로 하는 소방관 팀 훈련용 시뮬레이터 개발)

  • Lee, Jai-Kyung;Cha, Moo-Hyun;Choi, Byung-Il;Kim, Tae-Sung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.370-379
    • /
    • 2011
  • The increasing complexity of complex buildings, such as high-rise buildings and underground subway stations, presents new challenges to firefighters. In a fire in complex buildings, the importance of the collaboration between firefighters is clear. The increased demand on firefighter training for such environment is now evident. Due to cost, time, and safety issues, it is impossible to experience a real fire in such environments for training. In addition, the use of real fire for training does not enable repeatable training and the evaluation of the training is difficult. We developed a team-based firefighter training simulator for complex buildings using the virtual reality technology. It provides the training and evaluation of firefighting and mission-based team training. To model real fire phenomena in virtual space, a numerical analysis method based on fire dynamics is used. To achieve an immersive virtual environment, an augmented reality technique for the compensation of real world image and a haptic technique for heat experience are adopted. The developed training simulator can help the firefighter to respond to large and complex firefighting scenarios, while maintaining the safety of the trainees.

Study on System Support for Offshore Plant Piping Process Using 3D Simulator

  • Kim, Hyun-Cheol;Lee, Gyu-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.217-226
    • /
    • 2020
  • An offshore plant is an offshore platform that can process oil and gas resources in rough seas with a poor working environment. Moreover, it is a complex structure with different types of offshore facilities and a large amount of outfitting that connects different offshore installations. In particular, an enormous amount of various piping materials is installed in a relatively narrow space, and thus, the difficulty of working is relatively high compared to working in ships or ground plants. Generally, when the 3D detailed design is completed, an offshore plant piping process is carried out at the shipyard with ISO 2D fabrication drawings and ISO 2D installation drawings. If a worker wants to understand the three-dimensional piping composition in the working area, he can only use three-dimensional viewers that provide limited functionality. As offshore plant construction progresses, correlating work with predecessors becomes more complicated and rework occurs because of frequent design changes. This viewer function makes it difficult to identify the 3D piping structure of the urgently needed part. This study deals with the process support method based on a system using a 3D simulator to improve the efficiency of the piping process. The 3D simulator is based on the Unity3D engine and can be simulated by considering the classification and priority of 3D models by the piping process in the system. Further, it makes it possible to visualize progress information of the process. In addition, the punch content can be displayed on the 3D model after the pipe inspection. Finally, in supporting the data in relation to the piping process, it is considered that 3D-simulator-supported piping installing could improve the work efficiency by more than 99% compared to the existing method.

A Study on the Effective Smoke Control Method of Large Volume Space Comparted by Smoke Reservoir Screen (제연경계벽으로 구획된 대형공간의 효과적인 제연방안에 관한 연구)

  • Kim, Tae-Hoon;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • This research examines problem that can happen in partial smoke control method among contiguity area smoke control system through engineering examination and CFD. And the ultimate purpose of this is to secure safety of a person inhabiting at fire department by presenting improvement plan. Now a days, in large space-area such as department store or mega-mall in which mainly applies "Partial Smoke Control Method", air is suppled from adjacent area and smoke is exhausted in fire room. For various reason, however, it is confirmed through simulation that if air is suppled in one direction, this can cause a fatal result to people of fire area because of the difficulty in securing the evacuation time. As an improvement plan, air is supplied at the same time in surroundings to fire department.

Consideration on the helium leak detection in a large vacuum chamber (대형 진공용기의 헬륨 누설검사 방법에 대한 고찰)

  • In, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.235-243
    • /
    • 2007
  • Nowadays, in our country, large vacuum chambers for huge experimental facilities such as the tokamak fusion device, high power neural beam test stand, and space simulator have been constructed. In such a vacuum chamber of very large size, it is quite complicate to check on leakage quantitatively, while the probability of a leak is relatively high. To investigate the feasibility of applying reliably a helium leak detection to the huge vacuum chambers, and to find a reasonable methodology of choosing an optimum set-up for leak detection, several virtual constructions of the leak detection system have been analyzed by calculating the pressure distribution in the system and the helium level in the sensor part.