• Title/Summary/Keyword: Large Scale Integration(LSI)

Search Result 5, Processing Time 0.021 seconds

Analyses of Fracture Parameters and Prediction of Crack Propagation Path on Delamination in the LSI Package (반도체 패키지의 층간박리 파괴역학인자 해석 및 균열진전경로 예측)

  • Chung, Nam-Yong;Park, Cheol-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.401-409
    • /
    • 2009
  • This paper presents a method of calculating the stress intensity factor (K) and crack propagation direction (${\theta}_0$) at the crack-tip that is associated with delamination in the large scale integration(LSI) package. To establish a reasonable strength evaluation method and life prediction, it is necessary to assess fracture parameters under various fracture conditions. Therefore, we conducted quantitative stress singularity analysis considering thermal stress simulating the changes of crack length (a), (h) and (v) in delamination using the 2-dimensional elastic boundary element method (BEM), and from these results predicted crack propagation direction and path.

  • PDF

Analyses of Stress Singularities on Bonded Interfaces in the IC Package by Using Boundary Element method (경계요소법을 이용한 반도체 패키지의 응력특이성 해석)

  • Park, Cheol-Hee;Chung, Nam-Yong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.94-102
    • /
    • 2007
  • Applications of bonded dissimilar materials such as large scale integration (LSI) packages, ceramics/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edge in LSI. In order to investigate stress singularities on the bonded interface edges and delamination of die pad and resin in the IC package. In this paper, stress singularity factors(${\Gamma}_i$) and stress intensity factors($K_i$) considering thermal stress in the IC package were analyzed by using the 2-dimensional elastic boundary element method(BEM).

데이터 레코드의 Clustering Algorithms

  • 문송천
    • Communications of the Korean Institute of Information Scientists and Engineers
    • /
    • v.5 no.2
    • /
    • pp.90-93
    • /
    • 1987
  • Relatively few papers are known to study the clustering the same kind of data records in a cylinder. In this article, I reviewed the clustering algorithms especially for the cellular list file which have been studied.

Evaluation Method of Bonded Strength Considering Stress Singularity in Adhesively Bonded Joints (응력특이성을 고려한 접착이음의 강도평가 방법)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.58-68
    • /
    • 1998
  • Advantages of adhesively bonded joints and techniques of weight reduction have led to increasing use of structural adhesives such as LSI(large scale integration) package, automobile, aircraft in the various industries. In spite of such wide applications of adhesively bonded joints, the evaluation method of bonding strength has not been established. Stress singularity occurs at the interface edges of adhesively bonded joints and it is required to analyze it. In this paper, the stress singularity using 2-dimensional elastic boundary element method (BEM) with the changes of the lap length and adhesive for single lap joint was analyzed, and experiments of strength evaluation were carried out. As the results, the evaluating method of bonding strength considering stress singularity at interface edges of adhesively bonded joints and stress intensity factor of interface crack have been proposed in static and fatigue test.

  • PDF

Characteristics of Ultrasonic Motor using Voltage Control and Phase Difference Control (초음파 모터의 전압 및 위상차 제어 특성)

  • Shin, Duk;Kim, Dong-Ok;Ko, Nak-Yong;Choi, Han-Soo;Kim, Young-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.949-952
    • /
    • 1996
  • The ultrasonic motor(USM) has good characteristics such as compact size, silent motion, low speed, high torque and high speed response. The USM is driven by 2-phase AC electricity. The control parameters of USM are voltage, phase difference, frequency of input power, etc. In this paper, we propose voltage difference control. And we designed USM controller to adjust voltage and phase using pLSI(programmable Large Scale Integration). Voltage difference control has many advantages that are lower current, lower power than phase difference control. Especially there is nearly zero ampere at the zero point of speed and torque. we can apply this voltage difference control to the compliance control of DD manipulator.

  • PDF