• 제목/요약/키워드: Large Language Model (LLM)

검색결과 50건 처리시간 0.023초

검색 증강 생성(RAG) 기술에 대한 최신 연구 동향 (A Survey on Retrieval-Augmented Generation)

  • 이은빈;배호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.745-748
    • /
    • 2024
  • 글로벌 시장에서 Large Language Model(LLM)의 발전이 급속하게 이루어지며 활용도가 높아지고 있지만 특정 유형이나 전문적 지식이 부족할 수 있어 일반화하기 어려우며, 새로운 데이터로 업데이트하기 어렵다는 한계점이 있다. 이를 극복하기 위해 지속적으로 업데이트되는 최신 정보를 포함한 외부 데이터베이스에서 정보를 검색해 응답을 생성하는 Retrieval- Augmented Generation(RAG, 검색 증강 생성) 모델을 도입하여 LLM의 환각 현상을 최소화하고 효율성과 정확성을 향상시키려는 연구가 활발히 이루어지고 있다. 본 논문에서는 LLM의 검색 기능을 강화하기 위한 RAG의 연구 및 평가기법에 대한 최신 연구 동향을 소개하고 실제 산업에서 활용하기 위한 최적화 및 응용 사례를 소개하며 이를 바탕으로 향후 연구 방향성을 제시하고자 한다.

피드백 기법을 이용한 LLama2 모델 기반의 Zero-Shot 문서 그라운딩된 대화 시스템 성능 개선 (LLaMA2 Models with Feedback for Improving Document-Grounded Dialogue System)

  • 정민교;홍범석;최원석;한영섭;전병기;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.275-280
    • /
    • 2023
  • 문서 그라운딩된 대화 시스템의 응답 성능 개선을 위한 방법론을 제안한다. 사전 학습된 거대 언어 모델 LLM(Large Language Model)인 Llama2 모델에 Zero-Shot In-Context learning을 적용하여 대화 마지막 유저 질문에 대한 응답을 생성하는 태스크를 수행하였다. 본 연구에서 제안한 응답 생성은 검색된 top-1 문서와 대화 기록을 참조해 초기 응답을 생성하고, 생성된 초기 응답을 기반으로 검색된 문서를 대상으로 재순위화를 수행한다. 이 후, 특정 순위의 상위 문서들을 이용해 최종 응답을 생성하는 과정으로 이루어진다. 검색된 상위 문서를 이용하는 응답 생성 방식을 Baseline으로 하여 본 연구에서 제안한 방식과 비교하였다. 그 결과, 본 연구에서 제안한 방식이 검색된 결과에 기반한 실험에서 Baseline 보다 F1, Bleu, Rouge, Meteor Score가 향상한 것을 확인 하였다.

  • PDF

인공지능 기반 사회적 지지를 위한 대형언어모형의 공감적 추론 향상: 심리치료 모형을 중심으로 (Enhancing Empathic Reasoning of Large Language Models Based on Psychotherapy Models for AI-assisted Social Support)

  • 이윤경;이인주;신민정;배서연;한소원
    • 인지과학
    • /
    • 제35권1호
    • /
    • pp.23-48
    • /
    • 2024
  • 대형언어모형(LLM)을 현실에 적용하려는 지속적인 노력에도 불구하고, 인공지능이 맥락을 이해하고 사람의 의도에 맞게 사회적 지지를 제공하는 능력은 아직 제한적이다. 본 연구에서는 LLM이 사람의 감정 상태를 추론하도록 유도하기 위해, 심리 치료 이론을 기반으로 한 공감 체인(Chain of Empathy, CoE) 프롬프트 방법을 새로 개발했다. CoE 기반 LLM은 인지-행동 치료(CBT), 변증법적 행동 치료(DBT), 인간 중심 치료(PCT) 및 현실 치료(RT)와 같은 다양한 심리 치료 방식을 참고하였으며, 각 방식의 목적에 맞게 내담자의 정신 상태를 해석하도록 설계했다. CoE 기반 추론을 유도하지 않은 조건에서는 LLM이 사회적 지지를 구하는 내담자의 글에 주로 탐색적 공감 표현(예: 개방형 질문)만을 생성했으며, 추론을 유도한 조건에서는 각 심리 치료 모형을 대표하는 정신 상태 추론 방법과 일치하는 다양한 공감 표현을 생성했다. 공감 표현 분류 과제에서 CBT 기반 CoE는 감정적 반응, 탐색, 해석 등을 가장 균형적으로 분류하였으나, DBT 및 PCT 기반 CoE는 감정적 반응 공감 표현을 더 잘 분류하였다. 추가로, 각 프롬프트 조건 별로 생성된 텍스트 데이터를 정성적으로 분석하고 정렬 정확도를 평가하였다. 본 연구의 결과는 감정 및 맥락 이해가 인간-인공지능 의사소통에 미치는 영향에 대한 함의를 제공한다. 특히 인공지능이 안전하고 공감적으로 인간과 소통하는 데 있어 추론 방식이 중요하다는 근거를 제공하며, 이러한 추론 능력을 높이는 데 심리학의 이론이 인공지능의 발전과 활용에 기여할 수 있음을 시사한다.

Application of ChatGPT text extraction model in analyzing rhetorical principles of COVID-19 pandemic information on a question-and-answer community

  • Hyunwoo Moon;Beom Jun Bae;Sangwon Bae
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.205-213
    • /
    • 2024
  • This study uses a large language model (LLM) to identify Aristotle's rhetorical principles (ethos, pathos, and logos) in COVID-19 information on Naver Knowledge-iN, South Korea's leading question-and-answer community. The research analyzed the differences of these rhetorical elements in the most upvoted answers with random answers. A total of 193 answer pairs were randomly selected, with 135 pairs for training and 58 for testing. These answers were then coded in line with the rhetorical principles to refine GPT 3.5-based models. The models achieved F1 scores of .88 (ethos), .81 (pathos), and .69 (logos). Subsequent analysis of 128 new answer pairs revealed that logos, particularly factual information and logical reasoning, was more frequently used in the most upvoted answers than the random answers, whereas there were no differences in ethos and pathos between the answer groups. The results suggest that health information consumers value information including logos while ethos and pathos were not associated with consumers' preference for health information. By utilizing an LLM for the analysis of persuasive content, which has been typically conducted manually with much labor and time, this study not only demonstrates the feasibility of using an LLM for latent content but also contributes to expanding the horizon in the field of AI text extraction.

Zero-shot 기반 다중 문서 그라운딩된 대화 시스템 (Zero-shot Dialogue System Grounded in Multiple Documents)

  • 박준범;홍범석;최원석;한영섭;전병기;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.399-403
    • /
    • 2023
  • 본 논문에서는 다중 문서 기반의 대화 시스템을 통한 효율적인 정보 검색과 응답 생성에 중점을 둡니다. 대규모 데이터 집합에서 정확한 문서를 선택하는 데 필요한 검색의 중요성을 강조하며, 현재 검색 방법의 한계와 문제점을 지적합니다. 또한 더 자연스러운 답변을 생성하기 위해 대규모 언어 모델을 사용하게 되면서 fine-tuning 시에 발생하는 제약과 낭비를 모델의 제로샷 생성 능력을 활용하여 개선하려는 방안을 제안하며, 모델의 크기와 자원의 효율성에 대한 고려사항을 논의합니다. 우리의 접근 방식은 대규모 언어 모델을 프롬프트와 함께 다중 문서로 학습 없이 정보를 검색하고 응답을 생성하는 방향으로 접근하여 대화 시스템의 효율성과 유용성을 향상시킬 수 있음을 제시합니다.

  • PDF

생성형 AI 이해 및 활용을 위한 대학 교양교과목 교육과정 개발 (Development of university liberal arts curriculum for understanding and utilizing generative AI)

  • 박지현;박종진
    • 문화기술의 융합
    • /
    • 제10권5호
    • /
    • pp.645-650
    • /
    • 2024
  • 본 논문은 챗GPT를 중심으로 생성형 AI를 활용한 대학 교양교육을 위해 지방 소재의 두 대학에서 교양교과목 교육과정을 공동으로 설계하고 개발하였다. 개발된 교육과정은 기존 연구에서 제시된 대학 챗GPT 통합 활용 수업 설계를 위한 개념적 구성요소를 고려하여 챗GPT의 기반을 이루는 언어모델과 인공지능을 이해하고 챗GPT을 포함하는 생성형 AI를 다양한 도메인에 활용하는 내용으로 개발하였다. 개발된 교육과정은 다양한 전공의 수강생을 대상으로 챗GPT의 기반인 자연어처리 언어모델과 인공지능의 개념 및 변화양상을 소개하고, 생성 AI 및 대형언어모델(LLM)인 챗GPT와 다양한 오픈소스 생성 모델을 이용하여 나만의 AI 서비스를 구현하며, 대학 교양교육에서 혁신적인 교육방법으로서, 대학간 공유협력 공동교육과정운영을 위한 사례를 제시하고자 한다.

원격 의료의 혁신 (A Study on Tools for Agent System Development)

  • 하소희;박보경;한성수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.602-603
    • /
    • 2024
  • 이 논문은 코로나 팬데믹 시대에 원격 의료 서비스의 중요성이 부상함에 따라, LLM(Large Language Model)과 웨어러블 기기를 활용한 의료 기술의 발전과 이를 통한 의료 서비스의 혁신에 대해 다루고 있다. 코로나 19 대응을 위해 원격 의료에 대한 법적 제한이 완화되며, 이에 따른 원격 의료 시스템의 확대를 언급하고 있다. LLM 을 활용한 의료 정보 관리와 웨어러블을 통한 건강 모니터링을 소개하며, 대화형 AI 를 통한 문의사항 처리와 2 차 처방, 실시간 번역 AI 기술 등의 기술적 혁신을 언급하고 있다. 이러한 기술들이 의료 서비스의 혁신과 개인 건강 관리에 새로운 차원을 열어주지만, 보안 문제와 디지털 격차 등의 문제가 동반될 수 있다고 경고하며, 이를 극복하기 위한 대책과 지속적인 개선이 필요하다고 강조하고 있다.

LLM 시스템의 정보 누출 위험 탐색 (A Study on LLM system vulnerability)

  • 박정환;김건희;이상근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.786-787
    • /
    • 2024
  • Large Language Model은 그 기능으로 말미암아 여러 애플리케이션에 통합되고 있다. 특히 OpenAI는 ChatGPT에 여러 세부 사항을 설정함으로써 차별화된 기능을 사용자가 제공할 수 있도록 한다. 하지만 최근 제시되는 프롬프트 연출 공격은 서비스의 핵심 요소를 쉽게 탈취할 수 있는 가능성을 제시한다. 본 연구는 지침 우회 방법론을 통해 기본 대비 공격의 성공률을 10%p 올렸다. 또한 유출공격을 평가할 수 있는 유효성과 성공률을 통해 모델의 방어 성능을 일반화한다.

온디바이스 소형언어모델 기술개발 동향 (Technical Trends in On-device Small Language Model Technology Development)

  • 김근용;윤기하;김량수;류지형;김성창
    • 전자통신동향분석
    • /
    • 제39권4호
    • /
    • pp.82-92
    • /
    • 2024
  • This paper introduces the technological development trends in on-device SLMs (Small Language Models). Large Language Models (LLMs) based on the transformer model have gained global attention with the emergence of ChatGPT, providing detailed and sophisticated responses across various knowledge domains, thereby increasing their impact across society. While major global tech companies are continuously announcing new LLMs or enhancing their capabilities, the development of SLMs, which are lightweight versions of LLMs, is intensely progressing. SLMs have the advantage of being able to run as on-device AI on smartphones or edge devices with limited memory and computing resources, enabling their application in various fields from a commercialization perspective. This paper examines the technical features for developing SLMs, lightweight technologies, semiconductor technology development trends for on-device AI, and potential applications across various industries.

관련 연구 자동 생성을 위한 LLM의 활용 및 정제 기법 제안 (Proposal for the Utilization and Refinement Techniques of LLMs for Automated Research Generation)

  • 최승민;정유철
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.275-287
    • /
    • 2024
  • 과거부터 꾸준히 지식 그래프(Knowledge Graph)와 언어 모델(LM, Language Model)의 통합에 대한 많은 연구가 다뤄지고 있다. 그 중, 지식 그래프의 구조화된 지식을 이용해 자동 텍스트 생성을 다루는 연구는 그리 활성화되지 않았다. 본 연구에서는 기존 논문들과 비슷한 수준의 특정 도메인 관련 연구 항목(Related Work)을 자동 생성하기 위한 방법론, 즉, '1) 최적의 Prompt 선정, 2) 4단계 정제기법을 통해 Triple 추출, 3) 지식 그래프 구축, 4) 관련 연구 자동 생성'을 제안한다. 제안된 방법론은 대규모 언어 모델(LLM) 중, GPT-4를 활용하고, 4단계 정제 기법을 적용하여 관련 연구를 자동으로 생성하도록 설계했다. 그렇게 설계된 모델은 Triple 추출에서 #Supp, #Cont, Fluency에서 17.3, 14.1, 4.2의 성능과 GPT-4 자동 평가 기준, 100점 기준 정제 전, 88.5점에서 정제 후, 96.5점으로 기존 논문과 비슷한 수준의 유의미한 관련 연구 자동 생성 능력을 보였다.