• 제목/요약/키워드: Large Deformation Finite Element Method

검색결과 289건 처리시간 0.021초

대변형(大變形) 효과(效果)를 고려(考慮)한 평면(平面)뼈대 구조물(構造物)의 탄(彈)-소성(塑性) 유한요소해석(有限要素解析) (Elasto-Plastic F.E. Analysis of Plane Framed Structures including Large Deformation Effects)

  • 김문영;유순재;이명재
    • 대한토목학회논문집
    • /
    • 제14권1호
    • /
    • pp.105-117
    • /
    • 1994
  • 평면(平面)뼈대 구조물(構造物)에 대해 기하학적(幾何學的)인 비선형성(非線形性)과 소성(塑性)힌지의 개념(槪念)을 이용한 재료(材料)의 비선형성(非線形性)이 동시에 고려될 수 있도록 한 유한요소이론(有限要素理論) 및 해석방법(解析方法)을 제시한다. 단면(斷面)은 길이방향으로 일정하고, 구형(矩形) 및 I형(形) 단면(斷面)을 갖는 것으로 가정한다. 휨모멘트와 축방향력(軸方向力)의 결합된 효과를 고려한 한계함수(限界凾數) 사용하여 평면(平面)뼈대부재(部材)의 탄소성(彈塑性) 강도(剛度)매트릭스를 유도(誘導)한다. 변위증분법(變位增分法)을 적용하여 탄소성해석(彈塑性解析)에 의한 뼈대 구조물(構造物)의 극한거동(極限擧動)을 추적한다. 예제(例題)들을 통하여 다른 문헌(文獻)의 결과(結果)와 본(本) 연구(硏究)에 의한 결과(結果)를 비교(比較) 분석(分析)함으로써 제시된 이론(理論)의 정당성(正當性) 입증(立證)한다.

  • PDF

무연솔더(SnAgCu)와 유연솔더(SnPb)의 피로 수명 비교 연구 (A Comparative Study of the Fatigue Behavior of SnAgCu and SnPb Solder Joints)

  • 김일호;박태상;이순복
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1856-1863
    • /
    • 2004
  • In the last 50 years, lead-contained solder materials have been the most popular interconnect materials used in the electronics industry. Recently, lead-free solders are about to replace lead-contained solders for preventing environmental pollutions. However, the reliability of lead-free solders is not yet satisfactory. Several researchers reported that lead-contained solders have a good fatigue property. The others published that the lead-free solders have a longer thermal fatigue life. In this paper, the reason for the contradictory results published on the estimation of fatigue life of lead-free solder is investigated. In the present study, fatigue behavior of 63Sn37Pb, and two types of lead-free solder joints were compared using pseudo-power cycling testing method, which provides more realistic load cycling than chamber cycling method does. Pseudo-power cycling test was performed in various temperature ranges to evaluating the shear strain effect. A nonlinear finite element model was used to simulate the thermally induced visco-plastic deformation of solder ball joint in BGA packages. It was found that lead-free solder joints have a good fatigue property in the small temperature range condition. That condition induce small strain amplitude. However in the large temperature range condition, lead-contained solder joints have a longer fatigue life.

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • 제8권4호
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.

Postbuckling and nonlinear vibration of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.17-29
    • /
    • 2018
  • The thermal effects on the buckling, postbuckling and nonlinear vibration behaviors of composite laminated trapezoidal plates are studied. Aiming at the complex plate structure and to simulate the temperature distribution of the plate, a finite element method (FEM) is applied in this paper. In the temperature model, based on the thermal diffusion equation, the Galerkin's method is employed to establish the temperature equation of the composite laminated trapezoidal plate. The geometrical nonlinearity of the plate is considered by using the von Karman large deformation theory, and combining the thermal model and aeroelastic model, Hamilton's principle is employed to establish the thermoelastic equation of motion of the composite laminated trapezoidal plate. The thermal buckling and postbuckling of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results reported in the literature. Moreover, the effects of the temperature with the ply-angle on the thermal buckling and postbuckling of the composite laminated trapezoidal plates are studied, the thermal effects on the nonlinear vibration behaviors of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are also presented for the different temperatures and ply angles.

Characteristic study of bell-shaped anchor installed within cohesive soil

  • Das, Arya;Bera, Ashis Kumar
    • Geomechanics and Engineering
    • /
    • 제27권5호
    • /
    • pp.497-509
    • /
    • 2021
  • A large deformation FEM (Finite Element Method) based numerical analysis has been performed to study the behaviour of the bell-shaped anchor embedded in undrained saturated (cohesive) soil with the help of finite element based software ABAQUS. A typical model anchor with bell-diameter of 0.125 m, embedded in undrained saturated soil with varying cohesive strength (from 5 kN/m2 to 200 kN/m2) has been chosen for studying the characteristic behaviour of the bell-shaped anchor installed in cohesive soil. Breakout factors have been evaluated for each case and verified with the results of experimental model tests for three different types of soil samples. The maximum value of breakout factor was found as about 8.5 within a range of critical embedment ratio of 2.5 to 3. An explicit model has been developed to estimate the breakout factor (Fc) for uplift capacity of bell-shaped anchor within clay mass in terms of H/D ratio (embedment ratio). It was also found that, the ultimate uplift capacity of the anchor increases with the increase of the value of cohesive strength of the soil and H/D ratio. The empirical equation developed in the present investigation is usable within the range of cohesion value and H/D ratio from 5 kN/m2 to 200 kN /m2 and 0.5 to 3.0 respectively. The proposed model has been validated against data obtained from a series of model tests carried out in the present investigation. From the stress-profile analysis of the soil mass surrounding the anchor, occurrence of stress concentration is found to be generated at the joint of anchor shaft and bell. It was also found that the vertical and horizontal stresses surrounding the anchor diminish at about a distance of 0.3 m and 0.15 m respectively.

Ansys를 활용한 플랜트 시설물 내화성능에 대한 해석적 연구 (Analytical Study of Fire Resistance Performance of Plant Facilities using Ansys)

  • 최두찬;양민혁;오수민;양소진
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.958-967
    • /
    • 2023
  • 연구목적: 본 연구는 화재위험도가 높은 플랜트 시설물에 적용하고 있는 국내 내화성능을 분석하고 적합한 내화저항성능을 확보하여 플랜트 시설물의 화재 안전성을 확보하고자 한다. 연구방법:유한요소해석 프로그램인 Ansys를 활용하여 화재하중과 내화피복을 변수로 열전달 해석과 구조해석을 수행하고 해석 결과에 따른 플랜트 시설물의 내화성능을 분석하였다. 연구결과: 국내 플랜트 시설물에 적용된 내화피복은 UL 1709에 제시된 탄화수소화재의 화재하중을 적용하였을 때 내화성능을 확보하지 못하였으며 화재 후 강재의 변형 또한 크게 나타남을 확인하였다. 결론:현재 플랜트 시설물에 적용된 국내의 내화성능은 석유화학 플랜트 등과 같이 급격한 화재성장과 큰 화재하중에서 내화성능을 확보할 수 없으며 플랜트 시설물의 성능평가를 통해 적합한 내화성능을 평가하여 화재 안전성을 확보하여야 한다.

유연복합재를 이용한 헬리콥터 꼬리날개 구동축의 최적 설계 (Optimum Design of a Helicopter Tailrotor Driveshaft Using Flexible Matrix Composite)

  • 신응수;홍을표;이기녕;김옥현
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1914-1922
    • /
    • 2004
  • This paper provides a comprehensive study of optimum design of a helicopter tailrotor driveshaft made of the flexible matrix composites (FMCs). Since the driveshaft transmits power while subjected to large bending deformation due to aerodynamic loadings, the FMCs can be ideal for enhancing the drivetrain performance by absorbing the lateral deformation without shaft segmentation. However, the increased lateral flexibility and high internal damping of the FMCs may induce whirling instability at supercritical operating conditions. Thus, the purpose of optimization in this paper is to find a set of tailored FMC parameters that compromise between the lateral flexibility and the whirling stability while satisfying several criteria such as torsional buckling safety and the maximum shaft temperature at steadystate conditions. At first, the drivetrain was modeled based on the finite element method and the classical laminate theory with complex modulus approach. Then, an objective function was defined as a combination of an allowable bending deformation and external damping and a genetic algorithm was applied to search for an optimum set with respect to ply angles and stack sequences. Results show that an optimum laminate consists of two groups of layers: (i) one has ply angles well below 45$^{\circ}$ and the other far above 45$^{\circ}$ and (ii) the number of layers with low ply angles is much bigger than that with high ply angles. It is also found that a thick FMC shaft is desirable for both lateral flexibility and whirling stability. The genetic algorithm was effective in converging to several local optimums, whose laminates exhibit similar patterns as mentioned above.

자동차용 엔진 마운트의 피로거동에 관한 연구 (Fatigue Characteristics of Engine Rubber Mount for Automotive)

  • 서창민;오상엽;박대규;장주호
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.45-53
    • /
    • 2009
  • In this study, Finite Element Analysis (FEA) was used to decide three kinds of material property of vibration proof rubber with the unique characteristic of non-linear and large deformation. As well, three types of hardness (Hs 50, 55, 60) were compared with the result of fatigue tests, fatigue life was able to be predicted. The request for fatigue life becomes strict more and more as increasing stress under conditions like a compaction, high load and high temperature for parts because it is main characteristics of rubber mount for automotive. Regarding to the fatigue life under dynamic deformation condition, it can be predicted as checking forced deformation extends and its frequency and its strain-life curve. As for material property tests of uniaxial tension test, uniaxial compression test, pure shear test, Ogden model was used for FEA by observing relations between stress and strain's rate as curve fitting. As a result of FEA, fatigue life for rubber mount was predicted and accorded well with the experimental data of fatigue test with hourglass specimens. In addition, its property of the predictable fatigue life method suggested in this study was accorded well with the experimental data by comparing the predicted fatigue life of FEA with the result of fatigue test for rubber component of engine rubber mount.

두롤 교정기의 롤 갭 변화에 따른 봉강의 잔류응력과 소성변형에 관한 연구 (A Study of Residual Stress and Plastic Deformation of a Bar with Gap Size Changes Between Rolls in a Two Cross-Roll Straightener)

  • 조현수;함주희;이영호
    • 대한기계학회논문집A
    • /
    • 제36권4호
    • /
    • pp.355-360
    • /
    • 2012
  • 마봉강(CD bar)은 표면조도, 치수 정밀도 그리고 진직도 등에서 우수한 특성을 가진다. 그러한 특성들로 인해 자동차 및 가전 제품의 부품으로 산업현장에서 다양하게 사용되고 있다. 산업계에서 다양하게 사용되는 마봉강 제품은 두롤 교정기를 통해 만들어지고 있으며 본 논문에서는 마봉강을 생산하는 핵심공정인 두롤 교정기 연구를 통해 롤 갭에 따른 영향을 살펴 보았다. 두롤 사이의 간격인 롤 갭의 변화는 봉강의 잔류응력과 소성변형에 많은 영향을 주는 것을 실험적으로 확인하였다. 이를 확인하기 위해 2 롤 교정 전 공정인 인발공정에서 다이 통과 후 선경 변화와 봉강 내 잔류응력분포에 대해 유한요소 시뮬레이션을 수행하였다. 두롤 교정후 잔류응력과 선경의 변화를 확인하기 위해 실험을 수행하였으며, 여기서 X 선 회절기를 이용하여 축방향 및 원주방향에서의 표면 잔류응력을 실험적으로 측정하였다.

200kJ 대용량 에너지 흡수용 변형튜브 설계에 관한 연구 (Study on the Design of Deformation Tube for 200kJ Large Energy Absorption)

  • 김진모;이종길;김기남
    • 한국철도학회논문집
    • /
    • 제19권2호
    • /
    • pp.109-116
    • /
    • 2016
  • 고속철도 차량의 시장 점유율은 전 세계적으로 확대되고 있다. 고성능 충격 에너지 흡수 요소는 철도차량의 안전 기준을 충족하는 것이 필수 요소이다. 변형 튜브 조립체는 철도 차량에 대한 전형적인 에너지 흡수 요소이다. 그것은 변형 튜브와 압입 펀치로 구성되어 있으며 튜브 조립체의 성능은 튜브의 소성 영역에서 흡수 에너지 특성에 의존한다. 본 논문의 변형 튜브에서 흡수하는 소성변형 에너지는 200kJ의 철도차량 충돌 에너지를 흡수하도록 설계되어 있다. 슬래브 법과 유한 요소해석을 사용하여 초기 단계에서 펀치의 반력은 예측되며 설계된 튜브 조립체의 성능은 실험으로 확인되었다.