• 제목/요약/키워드: Large Deformation Finite Element Method

검색결과 289건 처리시간 0.023초

부유체식 Container Yard에 관한 연구 (A Study on the Container Yard of Mega-Float Offshore Structure Type.)

  • 박성현;박석주;고재용
    • 한국항해항만학회지
    • /
    • 제27권1호
    • /
    • pp.49-54
    • /
    • 2003
  • 우리나라가 세계 물류기지의 중심 국으로 발전하기 위해서는 날로 급증하고 있는 물류량을 처리하기 위한 항만의 건성이 시급한 과제이다. 국토가 좁고 대도기에 인구가 급증하고 있으나 삼면이 바라도 둘러 쌓여 잇는 우리나라의 경우에는 해양공간개발이 필요하다. 증가하는 물류량은 처리할 수 있는 항만의 건설을 위하여 본 연구에서는 초대형 부유채식 컨테이너 야드를 제안하고 해상에 설치되는 초대형 부유채식 컨테이너 야드가 파의 길이 , 해역의 수심, 입사하는 파의 방향등에 따라서 어떠한 응답특성을 나타내는지 파악한다.

Performance-based structural fire design of steel frames using conventional computer software

  • Chan, Y.K.;Iu, C.K.;Chan, S.L.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • 제10권3호
    • /
    • pp.207-222
    • /
    • 2010
  • Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second-order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

고유 변형도법과 리메슁 기술을 접목한 블록의 역세팅 형상 예측기술 (Prediction Technology of Reverse Setting Block Shape with Inherent Strain Method and Re-meshing Technology)

  • 현충민;최한석;박창우;김성훈
    • 한국해양공학회지
    • /
    • 제31권6호
    • /
    • pp.425-430
    • /
    • 2017
  • In order to reduce the cost of corrections and time needed for the block assembly process, the reverse setting method is applied for a back-heated block to neutralize deck deformation. The proper reverse setting shape for a back-heated block to correct deformation improved the deck flatness, but an excessive amount of reverse setting could inversely affect the flatness of the block. A prediction method was developed for the proper reverse setting shape using a back-heated block, considering the complex geometry of blocks, thickness of the deck plate, and thermal loading conditions such as welding and back-heating. The prediction method was developed by combining the re-meshing technique and inherent strain-based deformation analysis using the finite element method. Because the flatness deviation was decreased until the lower critical point and thereafter it tended to increase again, the optimum value for which the flatness was the best case was selected by repeatedly calculating the predefined reverse setting values. Based on this analysis and the study of the back-heating deformation of large assembly blocks, including the reverse setting shape, the mechanism for selecting the optimum reverse setting value was identified. The developed method was applied to the actual blocks of a ship, and it was confirmed that the flatness of the block was improved. It is concluded that the developed prediction method can be used to predict the optimum reverse setting shape value of a ship's block, which will reduce the cost of corrections in the construction stage.

A Study on the Uniformity Improvement of Residual Layer of a Large Area Nanoimprint Lithography

  • Kim, Kug-Weon;Noorani, Rafigul I.;Kim, Nam-Woong
    • 반도체디스플레이기술학회지
    • /
    • 제9권4호
    • /
    • pp.19-23
    • /
    • 2010
  • Nanoimprint lithography (NIL) is one of the most versatile and promising technology for micro/nano-patterning due to its simplicity, high throughput and low cost. Recently, one of the major trends of NIL is large-area patterning. Especially, the research of the application of NIL to TFT-LCD field has been increasing. Technical difficulties to keep the uniformity of the residual layer, however, become severer as the imprinting area increases. In this paper we performed a numerical study for a large area NIL (the $2^nd$ generation TFT-LCD glass substrate ($370{\times}470$ mm)) by using finite element method. First, a simple model considering the surrounding wall was established in order to simulate effectively and reduce the computing time. Then, the volume of fluid (VOF) and grid deformation method were utilized to calculate the free surfaces of the resist flow based on an Eulerian grid system. From the simulation, the velocity fields and the imprinting pressure during the filling process in the NIL were analyzed, and the effect of the surrounding wall and the uniformity of residual layer were investigated.

Free Vibration Analysis of Aboveground LNG-Storage Tanks by the Finite Element Method

  • Cho, Jin-Rae;Lee, Jin-Kyu;Song, Jeong-Mok;Park, Suk-Ho;Lee, Joong-Nam
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.633-644
    • /
    • 2000
  • Recently, in proportion to the increase of earthquake occurrence-frequency and its strength in the countries within the circum-pan Pacific earthquake belt, a concept of earthquake-proof design for huge structures containing liquid has been growing up. This study deals with the refinement of classical numerical approaches for the free vibration analysis of separated structure and liquid motions. According to the liquid-structure interaction, LNG-storage tanks exhibit two distinguished eigenmodes, the sloshing mode and the bulging mode. For the sloshing -mode analysis, we refine the classical rigid-tank model by reflecting the container flexibility. While, for the bulging-mode analysis, we refine the classical uncoupled structural vibration system by taking the liquid free-surface fluctuation into consideration. We first construct the refined dynamic models for both problems, and present the refined numerical procedures. Furthermore, in order for the efficient treatment of large-scale matrices, we employ the Lanczos iteration scheme and the frontal-solver for our test FEM program. With the developed program we carry out numerical experiments illustrating the theoretical results.

  • PDF

터보과급 대형 CNG기관 피스톤의 온도분포와 열응력 해석 (Numerical Analysis for Temperature Distribution and Thermal Stresses in a Turbocharged Large CNG Engine Piston)

  • 김양술;안수철
    • 한국가스학회지
    • /
    • 제12권4호
    • /
    • pp.58-62
    • /
    • 2008
  • 본 연구에서는 직렬 6기통 압축천연가스 엔진의 피스톤에 대한 3차원 모델링을 수행하여 정상상태에서의 온도분포 및 그에 따른 열응력과 변형을 예측하고, 이를 기존의 해석결과와 비교 검토를 통하여 피스톤의 유한요소해석의 기준을 구축하고자 한다. 또한 냉각시스템의 성능이 피스톤의 열부하에 미치는 영향을 평가하기 위하여 냉각수 온도의 변화에 따른 피스톤의 온도분포 및 열응력 분포 그리고 그에 따른 변형을 분석하였다. 분석결과 피스톤의 최고 온도는 크라운부의 중앙에서 나타났고, 피스톤의 크라운 하부에서 최대 열응력이 발생하였다.

  • PDF

Cyclic tests and numerical study of composite steel plate deep beam

  • Hu, Yi;Jiang, Liqiang;Zheng, Hong
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.23-34
    • /
    • 2017
  • Composite steel plate deep beam (CDB) is proposed as a lateral resisting member, which is constructed by steel plate and reinforced concrete (RC) panel, and it is connected with building frame through high-strength bolts. To investigate the seismic performance of the CDB, tests of two 1/3 scaled specimens with different length-to-height ratio were carried out under cyclic loads. The failure modes, load-carrying capacity, hysteretic behavior, ductility and energy dissipation were obtained and analyzed. In addition, the nonlinear finite element (FE) models of the specimens were established and verified by the test results. Besides, parametric analyses were performed to study the effect of length-to-height ratio, height-to-thickness ratio, material type and arrangement of RC panel. The experimental and numerical results showed that: the CDBs lost their load-carrying capacity because of the large out-of plane deformation and yield of the tension field formed on the steel plate. By increasing the length-to-height ratio of steel plate, the load-carrying capacity, elastic stiffness, ductility and energy dissipation capacity of the specimens were significantly enhanced. The ultimate loading capacity increased with increasing the length-to-height ratio of steel plate and yield strength of steel plate; and such capacity increased with decreasing of height-to-thickness ratio of steel plate and gap. Finally, a unified formula is proposed to calculate their ultimate loading capacity, and fitting formula on such indexes are provided for designation of the CDB.

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제2권1호
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

선박용 TEMA 열교환기의 전열관 확관시 탄소성 응력 해석 (The Elasto-Plastic Stress Analysis of Tube Expansion for Marine TEMA(Tubular Exchanger Manufactures Associations) Heat Exchangers)

  • 김옥삼;박종대
    • 해양환경안전학회지
    • /
    • 제17권2호
    • /
    • pp.173-178
    • /
    • 2011
  • 선박에 사용되는 TEMA 열교환기 전열관의 확관 공정에서 발생되는 탄소성 응력과 변형량의 거동을 유한요소법으로 해석하였다. 열교환기의 관판 구명의 홈 깊이와 롤러 익스팬더의 작용압력을 변화시켜 해석한 결과, 전열관의 관판 구멍의 홈 깊이가 커지면 탄소성 압축응력은 감소하였고, 롤러 익스팬더 압력이 높을수록 관판 구멍의 홈 모서리 부분의 탄소성 응력이 증가되었다.

Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties

  • Lal, Achchhe;Singh, B.N.;Kumar, Rakesh
    • Structural Engineering and Mechanics
    • /
    • 제27권2호
    • /
    • pp.199-222
    • /
    • 2007
  • Composite laminated structures supported on elastic foundations are being increasingly used in a great variety of engineering applications. Composites exhibit larger dispersion in their material properties compared to the conventional materials due to large number of parameters associated with their manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a better modeling of the material properties and foundation, these are treated as random variables. This paper deals with effects of randomness in material properties and foundation stiffness parameters on the free vibration response of laminated composite plate resting on an elastic foundation. A $C^0$ finite element method has been used for arriving at an eigen value problem. Higher order shear deformation theory has been used to model the displacement field. A mean centered first order perturbation technique has been employed to handle randomness in system properties for obtaining the stochastic characteristic of frequency response. It is observed that small amount of variations in random material properties and foundation stiffness parameters significantly affect the free vibration response of the laminated composite plate. The results have been compared with those available in the literature and an independent Monte Carlo simulation.