• Title/Summary/Keyword: Large Crankshaft

Search Result 20, Processing Time 0.031 seconds

Experimental and Numerical Study on Closed Die Hot Forging of a Large Crankshaft (대형 크랭크샤프트의 형단조에 관한 실험적 및 수치적 연구)

  • Cho, B.J.;Lee, M.C.;Kim, H.T.;Park, T.H.;JeGal, Y.J.;Choi, I.S.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.263-266
    • /
    • 2008
  • We apply a closed die forging technology to a large crankshaft of which forging weight amounts to 850kg. 40ton counter-blow hammer forging machine is used. The forging process is optimized to reduce the forming load using finite element simulation. AFDEX 3D is used for forging simulation. The experiment is compared with finite element prediction and a good agreement is observed. The successful development of a large crankshaft by the closed die forging technology will contribute to opening a new area of closed-die forging application and to enhancing competitiveness of national machinery industries especially including ship part and power generation industries.

  • PDF

A Study on Efficient Generation of Beam-Mass Model for Simplification of the Crankshaft in the Large Marine Engine (대형 선박엔진용 크랭크축 해석을 위한 보-질량 모델 생성 기법에 관한 연구)

  • Suh, Myung-Won;Shim, Mun-Bo;Kim, Ki-Hyun;Kim, Kyu-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1661-1666
    • /
    • 2003
  • The purpose of this study is to develop the simplified model of the crankshaft in the large marine engine for dynamic analysis. Because the actual engine system is under complex dynamic loading condition and it has multi-cylinder, the dynamic analysis is purchased at a high computation cost. In spite of this burden, the dynamic analysis must be perfonned to assure structural integrity of operating marine engine. Therefore, simplification of the analytic model is necessary for dynamic analysis. Beam-mass model, which is generated with the section property method, is the model simplified effectively. Section property method can provide desired section information by optimization technique. By applying beam-mass model to the crankshaft in the large marine engine, the usefulness of the proposed method was proven.

Two Stroke Low Speed Diesel Engine Crankshaft Crack Phenomenon Study by Torsional Vibration Calculation & Measurement (비틀림 진동 계산 및 측정을 통해 고찰한 선박용 2행정 저속엔진 Crankshaft 파단 현상)

  • Moon, Joung-Ha;Kim, Jeong-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.110-118
    • /
    • 2014
  • In the past two stroke low speed diesel engine were widely used for marine propulsion. these engine have many merit for example, higher thermal efficiency and durability. however, shaft vibration problem was continuously rise up due to large power of two stroke low speed diesel engine. specially, the initial stage engine revolution counter & stress has acculated. For that reason, sometimes occurred crankshaft crack accident. In this study, regarding the initial stage engine, trying to analyze what is cause the crack phenomenon using by latest torsional vibration calculation program & measurement equipment.

  • PDF

A Proposed Reduction Method for Vibatiton Analysis of Automobile Engine Crakshfts (자동차 엔진 크랭크축의 진동해석을 위한 자유도 저감법 개발에 관한 연구)

  • 최명진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.29-37
    • /
    • 1996
  • High speed engines with high power are increasingly on demands and almost engines employ crankshafts Such problems as bending and torsional vibrations become the point at issue in crankshaft analysis and design. In this study to overcome the diffiiculty with the large amount of computation in finite element vibration analysis of a crankshaft, a reduction method based on influence coefficient and lumped parameter is presented. which reduces the computation amount effectively and can be used in vibrational analysis and design of any types of crankshafts Crank journal and pinparts are meodelled as elements with 6degrees of freedom per node. Crank web part is modelled using equivalent mass and stiffness matices . based up on lumped parameter and influence coefficient respectively to reduce total degrees of freedom considerablely. To confirm the scheme of the study the results are compared with the known data and they are coincident. Also a simple crankshaft is designed and manufactured for experiments. The calculated results using reduction method and the experimental results agree well The scheme of this study can be utilized in evaluation results agree well. The calculated result are compared with the known data and they are coincident. Also a simple crankshaft is designed and manufactured for experiments. The calculated results using reduction method and the experimental results agree well. The scheme of this study can be utilized in evaluation and development of high speed engine.

  • PDF

A Study of Strength Evaluation of Crankshaft Lifting Pin for Reducing Weight (대형 크랭크축 리프팅 핀의 경량화를 위한 강도평가 연구)

  • Jeon, Byung-Young;Kim, Byung-Joo;Park, Jong-Du
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.7-12
    • /
    • 2004
  • Large-sized pins are usually used to lift and handle large low speed diesel engine crankshaft. There has then been a need to reduce and optimize the weight of the traditionally used pins. Making an hole by cutting the inside of the pin out was investigated in view of static and fracture strength. To compensate the stress increase caused by the introduction of the inner hole, the groove in the circumferential direction pre-existing on the pin is to be removed. Finite element analysis was carried out for both the original model and weight reduced model. Stress intensity factors for semi-elliptical defects assumed on the pin for the original model and weight reduced model was calculated using the ASME method and compared with the fracture toughness test result of the pin material. The diameter of the cutting hole for the revised model was determined based on the analysis results.

  • PDF

A Study on the Open Die Forging Preform Shape of Crank Throw for Large Ship Engines (선박용 크랭크스로우의 자유 단조 예비성형체 형상)

  • 김동영;김영득;김동권;김재철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.191-194
    • /
    • 2003
  • A crank throw, which is one of the part of crankshaft for a large diesel engine, is manufactured by both closed die forging and open die forging. For the improvement of productivity the open die forging method is usually adopted to manufacture it these days. In case of the open die forging for the crank throw, a preform shape is very important because it seriously affects final dimensions of the product. The purpose of this study is to investigate affective factors of the preform to obtain a good shape of final product through simulation and the results are compared to downsized lead experiments.

  • PDF

Finite Element Simulation of Hot forging of Special Purpose Large Crankshafts (대형 크랭크샤프트 단조 공정의 컴퓨터 시뮬레이션)

  • Park, J.H.;Lee, M.C.;Park, T.H.;Cho, B.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.297-300
    • /
    • 2008
  • In this paper, a simple and computationally efficient approach to non-isothermal three-dimensional analysis of hot forging processes is presented based on rigid-thermoviscoplastic finite element method. In the approach, the temperatures of dies are considered to be constant. Two hot forging processes of large crank shafts ranging from 800 to 1000 kg are simulated using the simple approach.

  • PDF

A theoretical investigation of mis-firing effects on the crankshaft axial vibration of diesel engine (박용디젤기관의 착화실패가 추진축계종진동에 미치는 영향에 관한 이론적 연구)

  • 변창주;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.28-36
    • /
    • 1988
  • Since the oil shocks of 1970s, the quality of the fuel oil for marine diesel engines has become more degarded than ever. When the poorer quality fuel is burned, carbon residues of the fuel oil cause blockage of the fuel injection valve nozzle and troubles of fuel injection system. The mis-firing of engine occurs due to the decrease of fuel quantity injected, the decrease of compression pressure in the slow speed range, the increase of fuel leaked and the high ignition temperature of degraded fuel etc. This paper is to investigate theoretically the effects of mis-firing on the crankshaft axial vibration of diesel engine. The cylinder pressure in operation is calculated by the computer aided simulation of closed cycle for a large two-stroke diesel engine and also the exciting force of axial vibration and the resonance amplitudes are calculated. And then, the condition of normal state, misfiring and one-cylinder cut-off operation are analyzed. The results of calculations show good agreements with those of the actual measurements.

  • PDF

Stiffness Evaluation of a Heavy-Duty Multi-Tasking Lathe for Large Size Crankshaft Using Random Excitation Test (랜덤가진시험을 이용한 대형 크랭크샤프트 가공용 복합다기능 선반의 강성 평가)

  • Choi, Young Hyu;Ha, Gyung Bo;An, Ho Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.7
    • /
    • pp.627-634
    • /
    • 2014
  • Machine tool vibration is well known for reducing machining accuracy. Because vibration response of a linear structure generally depends on its transfer function if the magnitude of excitation were kept constant, this study introduces a RET(Random Excitation Test) based on FRF method to evaluate stiffness of a prototype HDMTL(Heavy-Duty Multi-Tasking Lathe) for large crankshaft of marine engine. Firstly, two force loops of the lathe and corresponding structural loops were identified:1) workpiece - spindle - head stock - main bed, 2) workpiece - tool post - carriage bed. Secondly, compliances of each structural loop were measured respectively using RET with a hydraulic exciter and then converted into stiffness. Finally, the measured stiffness was compared with that obtained previously by FEM analysis. As the result, both measured and computed stiffness were closely in agreement with each other. And the prototype HDMTL has evidently sufficient rigidity above ordinary heavy-duty lathes.