• Title/Summary/Keyword: Large Capacity storage

Search Result 312, Processing Time 0.035 seconds

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.

A Study on Radiation Safety Evaluation for Spent Fuel Transportation Cask (사용후핵연료 운반용기 방사선적 안전성평가에 관한 연구)

  • Choi, Young-Hwan;Ko, Jae-Hun;Lee, Dong-Gyu;Jung, In-Su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.375-387
    • /
    • 2019
  • In this study, the radiation dose rates for the design basis fuel of 360 assemblies CANDU spent nuclear fuel transportation cask were evaluated, by measuring radiation source terms for the design basis fuel of a pressurized heavy water reactor. Additionally, radiological safety evaluation was carried out and the validity of the results was determined by radiological technical standards. To select the design basis fuel, which was the radiation source term for the spent fuel transportation cask, the design basis fuels from two spent fuel storage facilities were stored in a spent fuel transportation cask operating in Wolsung NPP. The design basis fuel for each transportation and storage system was based on the burnup of spent fuel, minimum cooling period, and time of transportation to the intermediate storage facility. A burnup of 7,800 MWD/MTU and a minimum cooling period of 6 years were set as the design basis fuel. The radiation source terms of the design basis fuel were evaluated using the ORIGEN-ARP computer module of SCALE computer code. The radiation shielding of the cask was evaluated using the MCNP6 computer code. In addition, the evaluation of the radiation dose rate outside the transport cask required by the technical standard was classified into normal and accident conditions. Thus, the maximum radiation dose rates calculated at the surface of the cask and at a point 2 m from the surface of the cask under normal transportation conditions were respectively 0.330 mSv·h-1 and 0.065 mSv·h-1. The maximum radiation dose rate 1 m from the surface of the cask under accident conditions was calculated as 0.321 mSv·h-1. Thus, it was confirmed that the spent fuel cask of the large capacity heavy water reactor had secured the radiation safety.

An Experimental Study on the Required Performances of Roof Concrete Placed in the In-ground LNG Storage Tank (지하식 LNG 저장탱크의 지붕 콘크리트의 요구성능에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.339-345
    • /
    • 2013
  • This study is to derive from the required performances and the optimum mix proportion of the roof concrete placed in the in-ground LNG storage tank with a capacity of 200000 $m^3$, and propose the actual data for site concrete work. The concrete placing work without sliding and segregation in the fresh concrete condition is very important because the slope of domed roof is varied in the large range by its curvature. Also the control of hydration heat and the strength development at test ages are classified with massive section about 1.4 m thick and considered to the pre-stressing work and removal of air support after concrete placing work. Considering above condition, slump range is selected $100{\pm}25$ mm under the slope $20^{\circ}$ and $150{\pm}25$ mm over the slope $20^{\circ}$ s until 60 minutes of elapsed time. Also, the roof concrete is satisfied with compressive strength range including design strength at 91 days (30 MPa), pre-stressing work at 7 days (10 MPa), air support removal work at 21 days (14 MPa). Replacement ratio of limestone powder is determined by confined water ratio test and main design factors include water-cement ratio (W/C), sand-aggregate ratio and dosage of admixture. As test results, the optimum mix proportion of the roof concrete used low heat cement is as followings. 1) Replacement ratio of limestone powder 25% by confined water ratio test 2) Water-cement ratio 57.8% 3) Sand-aggregate ratio 42.0%. Also, test results for the adiabatic temperature rising test is satisfied with its criteria and shown the lower value compared to preceding storage tank (TK-13, 14). These required performances and the optimum mix proportion is to apply the actual construction work.

An approximate study on flood reduction effect depending upon weir or gate type of lateral overflow structure of washland (강변저류지 월류부에서 월류제 또는 수문 형식에 따른 홍수저감효과에 관한 개략적 연구)

  • Ahn, Tae Jin
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.573-583
    • /
    • 2013
  • Construction of large-scale structures such as dams would be suggested actively to cope with change of flood characteristics caused by climate change. However, due to environmental, economic and political issues, dams are not ideally constructed. Thus flood damage reduction planning projects would get started including washland or detention pond for sharing the flood in basin. The washland made artificially by human being is an area of floodplain surrounded by bank to be intentionally inundated by overflowing through overflow structure adjacent to main channel during flood season. Flood reduction capacity at just downstream of each washland could be affected by type, length, and crest elevation of overflow structure in addition to shape of design hydrograph, storage volume of washland, etc.. In this study flood reduction effects of washland are estimated for overflow weir type and gate type to compare the results of flood reduction respectively subjected to given hydrograph in sample site, the Cheongmicheon stream. It has been shown that even if gate type at overflow structure could yield more flood reduction than overflow weir type, economic aspect such as initial cost, operation cost and maintenance cost should be considered to select the type of overflow structure because flood reduction rate by gate type could not be significant value from engineering point of view.

Design and Implementation of a 128-bit Block Cypher Algorithm SEED Using Low-Cost FPGA for Embedded Systems (내장형 시스템을 위한 128-비트 블록 암호화 알고리즘 SEED의 저비용 FPGA를 이용한 설계 및 구현)

  • Yi, Kang;Park, Ye-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.7
    • /
    • pp.402-413
    • /
    • 2004
  • This paper presents an Implementation of Korean standard 128-bit block cipher SEED for the small (8 or 16-bits) embedded system using a low-cost FPGA(Field Programmable Gate Array) chip. Due to their limited computing and storage capacities most of the 8-bits/16-bits small embedded systems require a separate and dedicated cryptography processor for data encryption and decryption process which require relatively heavy computation job. So, in order to integrate the SEED with other logic circuit block in a single chip we need to invent a design which minimizes the area demand while maintaining the proper performance. But, the straight-forward mapping of the SEED specification into hardware design results in exceedingly large circuit area for a low-cost FPGA capacity. Therefore, in this paper we present a design which maximize the resource sharing and utilizing the modern FPGA features to reduce the area demand resulting in the successful implementation of the SEED plus interface logic with single low-cost FPGA. We achieved 66% area accupation by our SEED design for the XC2S100 (a Spartan-II series FPGA from Xilinx) and data throughput more than 66Mbps. This Performance is sufficient for the small scale embedded system while achieving tight area requirement.

Drilling and Completion of CO2 Injection Well in the Offshore Pohang Basin, Yeongil Bay (포항분지 해상 CO2 주입정 시추 완결 및 구축)

  • Won, Kyoung-Sik;Lee, Dae-Sung;Kim, Sang-Jun;Choi, Seong-Do
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.193-206
    • /
    • 2018
  • In this study, as part of the "Small-scale $CO_2$ Injection-Demonstration Project in Offshore Pohang Basin", we performed drilling and completion of a $CO_2$ injection well from the offshore platform installed in the Yeongil Bay, Pohang city, Gyeongsang buk-do. The drilling of injection well was carried out from an offshore platform installing on the sediment formations of the Pohang Basin. Drilling diameters were reduced by stages, depending on the formation pressure and groundwater pressure along a depth and the casing installation and cement grouting in drilled hole were performed at each stage. The injection well was drilled to a final depth of 816.5 m with a hole diameter of 4 7/8 inches (${\Phi}124mm$) and the perforated casing for an injection section was installed in a depth of 746.5~816.5 m. Injection tubing, packer, and christmas tree were installed for the completion of an injection well for $CO_2$. The validation project of the $CO_2$ injection was accomplished successfully by drilling the injection well and installing the injection facilities, and through the suitable $CO_2$ injection process. The current injection facility is a facility for small-scale injection demonstration of 100 tons. In the case of large-scale demonstration facility test of a capacity of 10,000 tons, research is underway through the upgrading of the injection facilities.

Design & Performance of the Solar Energy Research & Test Center (태양에너지 연구 시험센타 설계 및 효율에 관한 연구)

  • Auh, Paul Chung-Moo;Lee, Jong-Ho;Choi, Byung-Owan;Cho, Yil-Sik
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.29-36
    • /
    • 1982
  • The Solar Energy R&D Department of KIER under the auspice of the Korean government is pushing hard on the development of the passive solar technology with high priority for the expeditious widespread use of solar energy in Korea, since the past few years of experiences told us that the active solar technology is not yet ready for massive commercialization in Korea. KIER has completed the construction of the Solar Energy Research & Test Center in Seoul, which houses the major facilities for its all solar test programs. The Center was designed as a passive solar building with great emphasis on the energy conserving ideas. The Center is not only the largest passive building in Korea, but also the exhibit center for the effective demonstration of the passive heating and cooling technology to the Korean public. The Center was designed to satisfy the requirements based on the technical and economical criteria set by the KIER. Careful considerations, therefore, were given in depth in the following areas to meet the requirements. 1) Passive Heating Concepts The Center employed the combination of direct and indirect gain system. The shape of the Center is Balcomb House style, and it included a large built-in sunspace in front. A partition, consists of transparent and translucent glazings, separates the sunspace and the living space. Since most activities in the Center occur during the day time, direct utilization of the solar energy by the living spaces was emphasized with the limited energy storage capacity. 2) Passive Cooling Concepts(for Summer) Natural ventilation concept was utilized throughout the building. In the direct gain portion of the system, the front glazing can be openable during the cooling season. Natural convection scheme was also applied to the front sunspace for the Summer cooling. Reflective surfaces and curtains were utilized wherever needed. 3) Auxiliary Heat ing and Cooling System As an auxiliary cooling system, mechanical means(forced convection system) were adopted. Therefore forced air heating system was also used to match the duct work requirements of the auxiliary cool ing system. 4) Effect ive Insulation & Others These included the double glazed windows, the double entry doors, the night glazing insulation, the front glazing-frame insulation as well as the building skin insulation. All locally available construction materials were used, and natural lightings were provided as much as possible. The expected annual energy savings (compared to the non-insulated conventional building)of the Center was estimated to be about 80%, which accounts for both the energy conservation and the solar energy source. The Center is being instumented for the actual performance tests. The experimental results of the simplified tests are discussed in this paper.

  • PDF

Erase Group Flash Translation Layer for Multi Block Erase of Fusion Flash Memory (퓨전 플래시 메모리의 다중 블록 삭제를 위한 Erase Croup Flash Translation Layer)

  • Lee, Dong-Hwan;Cho, Won-Hee;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.21-30
    • /
    • 2009
  • Fusion flash memory such as OneNAND$^{TM}$ is popular as a ubiquitous storage device for embedded systems because it has advantages of NAND and NOR flash memory that it can support large capacity, fast read/write performance and XIP(eXecute-In-Place). Besides, OneNAND$^{TM}$ provides not only advantages of hybrid structure but also multi-block erase function that improves slow erase performance by erasing the multiple blocks simultaneously. But traditional NAND Flash Translation Layer may not fully support it because the garbage collection of traditional FTL only considers a few block as victim block and erases them. In this paper, we propose an Erase Group Flash Translation Layer for improving multi-block erase function. EGFTL uses a superblock scheme for enhancing garbage collection performance and invalid block management to erase multiple blocks simultaneously. Also, it uses clustered hash table to improve the address translation performance of the superblock scheme. The experimental results show that the garbage collection performance of EGFTL is 30% higher than those of traditional FTLs, and the address translation performance of EGFTL is 5% higher than that of Superblock scheme.

Thermo-Chemical Analysis of a Calcination Furnace to Produce Cathode Material for the Secondary Batteries (이차전지 양극활물질 제조용 소성로의 열화학적 해석)

  • Hwang, Min-Young;Kim, Yong-Gyun;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Yong-Tae;Chang, Youn-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.155-161
    • /
    • 2009
  • Lithium secondary batteries have been widely used in the portable electric devices as power source. Recently it is expected that the realm of its applications expands to the markets such as energy storage medium of hybrid electric vehicle(HEV), electric vehicle(EV). Cathode active material is crucial in terms of performance, durability, capacity of lithium secondary batteries. It is urgent to develope the technology for mass production of cathode material to cope with the markets' demands in the near future. In this study, a calcination furnace running in real production line is modelled in 3D, and the thermal flow and gas flow after chemical reaction in the furnace is analyzed through numerical computations. Based on the results, it is shown that large volume of $CO_2$ gas is generated from chemical reaction. High concentration of $CO_2$ gas and it's stagnation is clearly found from the reactant containers in which the reaction occur to the bottom area of the furnace. It is also studied that 15% or more $CO_2$ mol fraction could affect to proper formation of $LiCoO_2$ through TGA-DSC analysis. The solutions to evacuate carbon dioxide from the furnace are suggested through the change of furnace design and operating condition as well.

A Dynamic Reorganization Method using the Hierarchical Structure in the Grid Database (그리드 데이터베이스에서 계층 구조를 이용한 동적 재조직 기법)

  • Cheon, Jong-Hyeon;Jang, Yong-Il;Cho, Sook-Kyoung;Lee, Soon-Jo;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.1 s.16
    • /
    • pp.93-106
    • /
    • 2006
  • A Grid Database is a database management system to process effectively and use the distributed data in a grid computing environment. Spatial data is more important than other general data according to the local characteristics and requires a large storage. The grid database can be used as the optimal system for the management of the spatial data. However, contrary to the conventional distributed database systems, the Grid Database which guarantees the local autonomy has a possibility not to provide an effective system, or it is impossible to use a centralized management environment. In order to allow flexible responses to a dynamically changing environment, it is required to use effectively reorganized method. In this paper, hierarchical reorganization method is presented for dynamic reorganization in a grid database. When the reorganization is conducted, an organizer is created to collect the information of databases. In addition, the organizer which is constructed by the hierarchical structure supports information communication and reorganization, and then it allows the support of regional reorganization operation and effective balance control. The performance assessment of the proposed method shows that the processing capacity is increased after the reorganization.

  • PDF