• 제목/요약/키워드: Lapped Panel

검색결과 2건 처리시간 0.016초

Design Considerations to Enhance Perforation Corrosion and Life Prediction of Automotive Body Panel

  • Choi, Minsoo;Chung, Bumgoo;Choi, Jaewoong
    • Corrosion Science and Technology
    • /
    • 제2권5호
    • /
    • pp.247-251
    • /
    • 2003
  • The corrosion forms of automotive body panels are various. One of the representations is a corrosion pitting and its propagation on the lapped portion by galvanic corrosion. But it has been difficult in correlation analysis about the corrosion propagation rate and mechanism of pitting and the actual automotive body in field. This present study interprets experimentally the rust pitting occurrence mechanism on the lapped panels through experimental methods. And field car investigation was executed for correlation analysis with experimental results. This paper compares corrosion propagation rate by pitting on hot-dip galvannealed steel sheets with corrosion forms in the automotive field condition. The research fundamentals which make it possible to predict the pitting occurrence and propagation on the lapped panels in the actual vehicles are given.

CAE 를 통한 하이브리드 용접 후 차체부품 변형예측 및 검증 (Prediction and Verification of the Twist Deformation of Automotive Structure Parts after Hybrid Welding Using CAE)

  • 이덕영;최보성;최원호;안장호
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.87-95
    • /
    • 2012
  • In recent years, laser-arc hybrid welding has begun to be adopted for assembly welding of automotive bodies and parts, because the hybrid welding process can weld lapped steel sheets having a larger gap than is possible with laser welding. In this paper, to predict the twist deformation by the hybrid welding when brackets are welded in B pillar of a passenger car, the residual stress using CAE is analyzed and the deformation result of CAE is compared with the measured deformation. First of all, after modeling heat source as intended to be expressed with laser-arc hybrid welding method, heat source fitting is done with welding conditions and a section of welding part obtained through specimen test. In case of heat source functions, laser used conical source and arc used double ellipsoid source. Through the local model analysis, elements which are located in the center of the model are selected. The elements are called WME(Welding Macro Element). This WME is extruded in the welding lines and welding phenomenon of complex parts is accomplished. The deformation amount after hybrid welding is got through a simulation, the validity of simulation is verified by measuring the panel and comparing with the simulation result.