• Title/Summary/Keyword: Laplacian source

Search Result 22, Processing Time 0.014 seconds

A Novel Approach for Blind Estimation of Reverberation Time using Gamma Distribution Model

  • Hamza, Amad;Jan, Tariqullah;Jehangir, Asiya;Shah, Waqar;Zafar, Haseeb;Asif, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.529-536
    • /
    • 2016
  • In this paper we proposed an unsupervised algorithm to estimate the reverberation time (RT) directly from the reverberant speech signal. For estimation process we use maximum likelihood estimation (MLE) which is a very well-known and state of the art method for estimation in the field of signal processing. All existing RT estimation methods are based on the decay rate distribution. The decay rate can be obtained either from the energy envelop decay curve analysis of noise source when it is switch off or from decay curve of impulse response of an enclosure. The analysis of a pre-existing method of reverberation time estimation is the foundation of the proposed method. In one of the state of the art method, the reverberation decay is modeled as a Laplacian distribution. In this paper, the proposed method models the reverberation decay as a Gamma distribution along with the unification of an effective technique for spotting free decay in reverberant speech. Maximum likelihood estimation technique is then used to estimate the RT from the free decays. The method was motivated by our observation that the RT of a reverberant signal when falls in specific range, then the decay rate of the signal follows Gamma distribution. Experiments are carried out on different reverberant speech signal to measure the accuracy of the suggested method. The experimental results reveal that the proposed method performs better and the accuracy is high in comparison to the state of the art method.

Spatiotemporal Analysis of Hippocampal Long Term Potentiation Using Independent Component Analysis

  • Kim, T.S.;Lee, J.J.;Hwang, S.J.;Lee, Y.K.;Park, J.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • Long-term potentiation (LTP) of synaptic transmission is the most widely studied model for learning and memory. However its mechanisms are not clearly elucidated and are a subject for intense investigation. Previous attempts to decipher cellular mechanisms and network properties involved a current-source density analysis (CSDA) of the LTP from small animal hippocampus measured with a limited number of microelectrodes (typically <3), only revealing limited nature of spatiotemporal dynamics. Recent advancement in multi-electrode array (MEA) technology allows continuous and simultaneous recordings of LTP with more than 60 electrodes. However CSDA via the standard Laplacian transform is still limited due to its relatively high sensitivity toward noise, inability of resolving overlapped current sources and sinks, and its requirement for tissue conductivity values. In this study, we propose a new methodology for improved CSDA. Independent component analysis and its joint use (i.e., Joint-ICA) are applied to extract spatiotemporal components of LTP. The results show that ICA and Joint-ICA are capable of extracting independent spatiotemporal components of LTP generators. The ICs of LTP indicate the reversing roles of current sources and sinks which are associated with LTP.