• Title/Summary/Keyword: Laplace transform.

Search Result 280, Processing Time 0.025 seconds

An Analysis of Transient Characteristics on Grounding Systems in the Radio Relay Station (무선중계소 접지계의 과도특성 해석)

  • Wang Kim
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.9
    • /
    • pp.1-5
    • /
    • 1993
  • The surge impedance of grounding systems must be accurately computed for a safe grounding design. Specifically, the case of radio relay station in a mountaintop region is required special design method using transient analyses. To approach these design objectives, this paper presents an algorithm to compute the surge impedance of two or more grounding systems using the Laplace Transform technique and deals with the analysis of the transient characteristics on grounding systems. Also, simulation results are compared with the measured data to prove the validity of the algorithm.

  • PDF

Delay Analysis of the ISDN D-channel Access Protocol (ISDN D-채널 Access Protocol의 Delay 분석)

  • 이구연;은종관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.2
    • /
    • pp.98-111
    • /
    • 1990
  • In this paper a queneing model for the D channel access protocal recommeded by CCITT is developed, and delays of the signalling and packet messages are analyzed using the model, Behaviors of packet and signalling messages in the D-channel access system are also investigated. The analytical results have been verified by simulation.

  • PDF

Thermal flow intensity factor for non-homogeneous material subjected to unsteady thermal load (비정상 열 하중을 받는 이질재료의 열량 집중 계수 해석)

  • Kim, Gui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.26-34
    • /
    • 2008
  • This article provides a comprehensive treatment of cracks in non-homogeneous structural materials such as functionally graded materials (FGMs). It is assumed that the material properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces. By using laminated composite plate model to simulate the material non-homogeneity, we present an algorithm for solving the system based on Laplace transform and Fourier transform techniques. Unlike earlier studies that considered certain assumed property distributions and a single crack problem, the current investigation studies multiple crack problem in the FGMs with arbitrarily varying material properties. As a numerical illustration, transient thermal flow intensity factors for a metal-ceramic joint specimen with a functionally graded interlayer subjected to sudden heating on its boundary are presented. The results obtained demonstrate that the present model is an efficient tool in the fracture analysis of non-homogeneous material with properties varying in the thickness direction.

  • PDF

Multi-Crack Problems for Non-homogeneous Material Subjected to Unsteady Thermal Load (비정상 열 하중을 받는 이질재료의 다중 크랙 문제)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • The purpose of this paper is to investigate the time behavior of a multiple crack problems. It is assumed that the medium contains cracks perpendicular to the crack surfaces, that the thermo-mechanical properties are continuous functions of the thickness coordinate. we use the laminated composite plate model to simulate the material non-homogeneity. By utilizing the Laplace transform and Fourier transform techniques, the multiple crack problems in the non-homogeneous medium is formulated. Singular integral equations are derived and solved to investigate the multiple crack problems. As a numerical illustration, transient thermal stress intensity factors(TSIFs) for a functionally graded material plate subjected to sudden heating on its boundary are provided. The variation in the TSIFs due to the change in material gradient and the crack position is studied.

Transient interactions between submerged elastic shells and acoustic shock waves from a moving source (움직이는 소스와 구형쉘의 상호작용 해석)

  • 이민형;이범헌;이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.85-89
    • /
    • 2001
  • The problem of the transient interaction of a plane acoustic shock wave which has an infinitely steep wave front with a cylindrical or spherical elastic shell has been studied analytically from early fifties based on the integral transform and series solution techniques. Huang adopted an inverse Laplace transform, and used a finite number of terms of the infinite series expansion of the equations for the shells. In the 1990s, the results have been used by many authors for validation of computer codes. The object of this paper is to discuss the interaction between a moving source and submerged spherical shells. Since the center of source is moving the first contact location between the waves and shell changes depending on the source velocity and distance. These are considered in the analysis. Furthermore, constant source strength and decreasing strength are considered in the analysis. Radial velocities at several locations on the structure are obtained and the results are discussed.

  • PDF

FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE NEW METHODS FOR SOLUTION

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.31-48
    • /
    • 2007
  • The paper deals with the solution of some fractional partial differential equations obtained by substituting modified Riemann-Liouville derivatives for the customary derivatives. This derivative is introduced to avoid using the so-called Caputo fractional derivative which, at the extreme, says that, if you want to get the first derivative of a function you must before have at hand its second derivative. Firstly, one gives a brief background on the fractional Taylor series of nondifferentiable functions and its consequence on the derivative chain rule. Then one considers linear fractional partial differential equations with constant coefficients, and one shows how, in some instances, one can obtain their solutions on bypassing the use of Fourier transform and/or Laplace transform. Later one develops a Lagrange method via characteristics for some linear fractional differential equations with nonconstant coefficients, and involving fractional derivatives of only one order. The key is the fractional Taylor series of non differentiable function $f(x+h)=E_{\alpha}(h^{\alpha}{D_x^{\alpha})f(x)$.

Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation

  • Dai, H.L.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.441-457
    • /
    • 2005
  • An analytical method is presented to solve the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere subjected to thermal shock and electric excitation. Exact expressions for the transient responses of displacements, stresses, electric displacement and electric potentials in the piezoelectric hollow sphere are obtained by means of Hankel transform, Laplace transform, and inverse transforms. Using Hermite non-linear interpolation method solves Volterra integral equation of the second kind involved in the exact expression, which is caused by interaction between thermo-elastic field and thermo-electric field. Thus, an analytical solution for the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere is obtained. Finally, some numerical results are carried out, and may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.

Analysis of Delay Performance for QoS Support in Wireless Networks (무선 네트워크에서 Qos 보장을 위한 딜레이 성능 분석)

  • Kim Jenog Geun;Cho Jin Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10B
    • /
    • pp.831-840
    • /
    • 2004
  • Providing quality of service (QoS) guarantees over wireless link requires thorough understanding and quantification of the interactions among the traffic source, the wireless channel, and the underlying error control mechanisms. In this paper, we account for such interactions in a network-layer model that we use to investigate the delay performance of a wireless channel. We consider a single ON/OFF traffic stream transported over a wireless link. The capacity of this link fluctuates according to a fluid version of Gilbert-Elliot's model. We derive the packet delay distribution via two different approaches: uniformization and Laplace transform. Numerical aspects of both approaches are compared. The delay distribution is further used to quantify the wireless effective bandwidth under a given delay guarantee. Numerical results and simulations are used to verify the adequacy of our analysis and to study the impact of error control and bandwidth allocation on the packet delay performance. Wireless networks, QoS, delay distribution, fluid analysis.

Three-dimensional Wave Propagation Modeling using OpenACC and GPU (OpenACC와 GPU를 이용한 3차원 파동 전파 모델링)

  • Kim, Ahreum;Lee, Jongwoo;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2017
  • We calculated 3D frequency- and Laplace-domain wavefields using time-domain modeling and Fourier transform or Laplace transform. We adopted OpenACC and GPU for an efficient parallel calculation. The OpenACC makes it easy to use GPU accelerators by adding directives in conventional C, C++, and Fortran programming languages. Accordingly, one doesn't have to learn new GPGPU programming languages such as CUDA or OpenCL to use GPU. An OpenACC program allocates GPU memory, transfers data between the host CPU and GPU devices and performs GPU operations automatically or following user-defined directives. We compared performance of 3D wave propagation modeling programs using OpenACC and GPU to that using single-core CPU through numerical tests. Results using a homogeneous model and the SEG/EAGE salt model show that the OpenACC programs are approximately 53 and 30 times faster than those using single-core CPU.