• Title/Summary/Keyword: Lap-splice

Search Result 163, Processing Time 0.027 seconds

Analytical Study on Splice Performances with the Vertical Noncontact Lapped of Reinforcing Bars (수직으로 비접촉 겹침이음된 철근의 이음성능에 관한 해석적 연구)

  • Lee Ho-Jin;Kim Seung-Hun;Ha Sang-Su;Moon Jeong-Ho;Lee Li-Hyung;Lee Yong-Taeg
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.171-174
    • /
    • 2005
  • In this study, new moment-resisting precast concrete beam-column joint is proposed for moderate seismic regions. It has the connection reinforcing bars, penetrated the joint and lap-spliced with the bottom bars of precast U-beam. To evaluate the performance for noncontact lapped splice, analytical works were conducted. Major variables for FEM analysis are the length of lap, the diameter of connection reinforcing bars, and the distance between lapped bars. The results of this study show thar the these variables has much influence on strength and deformation of lapped joint.

  • PDF

Similitude in Flexural Bond Behavior of Small-Scale Reinforced Concrete Beams (축소모델 철근콘크리트 보의 휨부착거동에 있어서의 상사성)

  • 이한선;고동우
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.47-57
    • /
    • 1999
  • The small-scale models have been utilized for the prediction of inelastic behavior of reinforced concrete structures for several decades. The parameters that affect the similitude between the model and prototype are various. Among them, the effect of bond between the model reinforcement and the model concrete is one of the most important factors. The study reported herein is addressed to verifying this similitude in bond behavior. The simple beams which have the lap splice at the midspan were made and flexural tests were performed under two-point loading. The length of lap splice are varied from 0.4ld through 0.7ld and up to 1.0ld where ld is the development length of the reinforcement. The selected scales are 1/1, 1/5, 1/10 and 1/12. Two prototype specimens and three models were tested in addition to the associated material tests and the test results are compared from the viewpoint of similitude.

Mechanical splices of reinforcing bars subjected to bending moments

  • Sadegh Hashemi;Ali Kheyroddin;Ghasem Pachideh
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.301-311
    • /
    • 2024
  • Different methods have been proposed in the literature for splicing the reinforcing bars in the construction of concrete structures, which are alternatively used depending on design requirements. The most common approach is the lap splicing which is known as a cost-effective method although, its main disadvantages including congestion of bars at the lap zone and consequently, material wastage has motivated utilization of the other techniques such as mechanical splices (couplers). To better evaluate the performance of the couplers, 6 reinforced concrete (RC) beams whose difference is only the type and location of splices have been experimentally studied in this paper. Based on the results, the mechanical connection of the bars did not markedly affect the load-carrying capacity of the specimens. Moreover, it was observed that after applying the loads and failure of the specimens, none of the bars ruptured at the splice location and all couplers remained undamaged.

Bidirectional Lateral Loading of RC Columns with Short Lap Splices (겹침이음 길이가 짧은 RC 기둥의 이방향 횡하중 가력 실험)

  • Lee, Chang Seok;Park, Yi Seul;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.19-27
    • /
    • 2020
  • Reinforced concrete (RC) buildings built in the 1980s are vulnerable to seismic behavior because they were designed without any consideration of seismic loads. These buildings have widely spaced transverse reinforcements and a short lap splice length of longitudinal reinforcements, which makes them vulnerable to severe damage or even collapse during earthquakes. The purpose of this study is to investigate the impact of bidirectional lateral loads on RC columns with deficient reinforcement details. An experimental test was conducted for two full-scale RC column specimens. The test results of deficient RC columns revealed that bidirectional loading deteriorates the seismic capacity when compared with a column tested unidirectionally. Modeling parameters were extracted from the tested load-displacement response and compared with those proposed in performance-based design standards. The modeling parameters proposed in the standards underestimated the deformation capacity of tested specimens by nearly 50% and overestimated the strength capacity by 15 to 20%.

Seismic Performance Evaluation of Moderate Seismically Designed RC Bridge Piers with Confinement Steel Type (중저진 철근 콘크리트 교각의 횡방향 철근 배근 형태에 따른 내진성능 평가)

  • Park, Jong-Hyup;Kim, Hoon;Lee, Jae-Hoon;Chung, Young-Soo;Cho, Dae-Yeon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.194-199
    • /
    • 2001
  • Lap splice in plastic hinge region is inevitable because of due to constructional joint between footing and column. R/C Circular columns with lap-splice in plastic hinge region are widely used in Korean highway bridges. In addition, these columns which constructed before the seismic design code have a number of structural deficiencies. It is, however, believed that there are not many experimental research works for nonlinear behavior of these columns subjected to earthquake motions. The object of this research is to evaluate the seismic performance of existing circular reinforced concrete bridge piers by the Quasi-static test. Existing reinforced concrete bridge piers were moderate seismically designed in accordance with the conventional provisions of Korea Highway Design Specification. This study has been performed to verify the effect of lap spliced longitudinal steel, confinement steel type and confinement steel ratio far the seismic behavior of reinforced concrete bridge piers. Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as displacement ductility, energy absorption, strength degradation etc.

  • PDF

An Experimental Study on the Splice of Reinforcement Embedded in High Performance Hybrid Fiber Reinforced Cementitious Composites (하이브리드 섬유를 사용한 고인성 섬유보강 시멘트 복합체내의 철근이음에 관한 실험적 연구)

  • Jeon Esther;Yang Il-Seung;Han Byung-Chan;Seo Soo-Yeon;Yoon Seung-Joe;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.319-322
    • /
    • 2005
  • Experimental results on splice strength of concrete and hybrid fiber reinforced cementitious composite are reported. Two series of tests, with six specimens each, were carried out. The research parameters were: bar diameter(D16, D22), lap splice length(50, 75, 100$\%$). The current experimental results demonstrated clearly that the use of hybrid fibers in cementitious matrixes increases significantly the splice strength of reinforcing bars in tension. Also, the presence of fibers increased the number of cracks formed around the spliced bars, delayed the growth of the splitting cracks, and consequently, improved the ductility of bond failure.

  • PDF

Flexural Behavior of Concrete Beams Reinforced with Lap Spliced FRP Bar (겹이음된 FRP 보강근으로 보강된 콘크리트 보의 휨거동)

  • Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.186-194
    • /
    • 2009
  • This is a part of the extensive ongoing investigation being carried out by author to develop appropriate design procedure of the concrete member reinforced with FRP rebars instead of conventional steel rebars. This study presents the experimental results of a research programme to assess the structural characteristics of spliced rebar in reinforced concrete members with FRP reinforcement. The test variables are the diameter of FRP rebar and the embedment length. The development length (ld) was calculated according to the ACI 440 for FRP rebars in concrete. A total of 14 concrete beams reinforced with spliced FRP rebars and 4 reference beams reinforced with non-spliced FRP rebars were tested. The effects of bar size (10, 13, 16 and 19 mm) and splice length (from 0.72 to 1.58ld) on the bond strength were empirically evaluated. The test results indicate that a modification factor of 1.3 and 1.6 is relatively sufficient for the bond development length of glass FRP rebars in order to achieve an adequate tension lap splice length.

Seismic performance evaluation of circular composite columns by shaking table test (진동대 실험을 통한 원형 합성 기둥의 내진 성능 평가)

  • Shim, Chang-Su;Chung, Young-Soo;Park, Ji-Ho;Park, Chang-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.71-81
    • /
    • 2007
  • For the design of composite bridge piers, detail requirements for the reinforcements is not clear to satisfy the required seismic performance. Composite bridge piers were suggested to reduce the sectional dimensions and to enhance the ductility of the columns under earthquake loadings. In this paper, five specimens of concrete encased composite columns of 400mm diameter with single core steel were fabricated to investigate the seismic performance of the composite columns. Shaking table tests and a Pseudo-Dynamic test were carried out and structural behavior of small-scaled models considering near-fault motions was evaluated. Test parameters were the pace of the transverse reinforcement, lap splice of longitudinal reinforcement and encased steel member sections. The displacement ductility from shaking table tests was lower than that from the pseudo-dynamic test. Limited ductile design and 50% lap splice of longitudinal reinforcement reduced the displacement ductility. Steel ratio showed significant effect on the ultimate strength. Lap splice and low transverse reinforcements reduced the displacement capacity. The energy dissipation capacity of composite columns did not show significant difference according to details.

Seismic Retrofit of GFRP Wrapping on the Lap-spliced Bridge Piers (GFRP 래핑에 의한 겹침이음된 교각의 내진보강)

  • Youm, Kwang Soo;Kwon, Tae Gyu;Lee, Young Ho;Hwang, Yoon Kook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.311-318
    • /
    • 2006
  • This paper presents experimental studies on investigating the seismic retrofit performance of reinforced concrete circular columns with poor lap-splice details using GFRP wrapping. Five full-scale model columns have been tested. The prototype structure is an existing circular reinforced concrete bridge piers designed following the pre-seismic codes and constructed in South Korea in 1979. The as-built column will be expected to suffer brittle failure due to the bond failure of lap-spliced longitudinal reinforcement. The retrofitted columns using GFRP wrapping showed significant improvement of seismic performance. However, the predicted flexural failure mode was not achieved and the longitudinal bars were not yielded. Failure modes of the retrofitted columns are considered to be the gradually delayed bond slip in lap-spliced longitudinal reinforcement. Suggested retrofit design methods using GFRP were validated experimentally.

Tension Lap Splice Length in High-Strength Concrete Flexural Members (고강도 콘크리트 휨부재의 인장 겹침이음길이에 관한 연구)

  • Lee, Gi-Yeol;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.753-761
    • /
    • 2009
  • This paper presents the test results of total 24 beam-end specimens to investigate the effect of high-strength concrete and cover thickness on the development resistance capacity in tensile lap splice length regions. Based on bond characteristics that an increase in concrete strength results in higher bond stress and shortening of the transfer length, cracking behavior that thin cover thickness induced a splitting crack easily and brittle crack propagation, current design code that development length provisions as uniform bond stress assumption was investigated apply as it. The results showed that as higher strength concrete was employed, not only development resistance capacity was influenced by cover thickness, but also more sufficient safety factor reserved shorter than the lap splice length provision in current design code. From experimental research results, high-strength concrete development length was not inverse ratio of $\sqrt{f_{ck}}$ but directly inverse of $f_{ck}$, and it is also said that there is a certain limit length of the embedded steel over which the assumption of uniform bond stress distribution is valid specially for high-strength concrete not having a same embed length such as normal-strength concrete in current design criteria hypothesis.