• 제목/요약/키워드: Language-Based Retrieval Model

검색결과 73건 처리시간 0.021초

다중 기계학습 방법을 이용한 한국어 커뮤니티 기반 질의-응답 시스템 (A Korean Community-based Question Answering System Using Multiple Machine Learning Methods)

  • 권순재;김주애;강상우;서정연
    • 정보과학회 논문지
    • /
    • 제43권10호
    • /
    • pp.1085-1093
    • /
    • 2016
  • 커뮤니티 기반 질의 응답 시스템은 사용자 질의에 대한 정답을 인터넷 커뮤니티에 사용자들이 게시했던 문서 중에서 선택하여 제공하는 시스템이다. 기존 방법들은 질의 분석의 성능 향상을 위하여 목적 영역에 적합한 규칙을 구축하거나 일부 처리 과정에 기계 학습을 적용하였다. 하지만 기존 방법들은 적용 영역을 확장하거나 수정하는 경우 많은 비용이 소요되며 경우에 따라서는 시스템이 특정 영역에 과적합되는 경우가 발생한다. 본 논문에서는 커뮤니티 기반 질의-응답 시스템의 효과적인 처리를 위해서 시스템의 각 과정에 적합한 기계 학습 방법을 적용하여 전체 과정을 자동화하는 다중 기계학습 방법을 제안한다. 제안 시스템은 사용자 질의를 분석하는 부분과 정답 문서를 선택하는 부분으로 나눌 수 있다. 질의 분석 과정은 질의의 초점 구문을 분석하는 질의 핵심부 추출기와 질의의 주제를 분류하는 질의 유형 분류기로 구성하였으며, 전자는 조건부 무작위장을 사용하고 후자는 지지 벡터 기계를 사용한다. 정답 문서 선택에서는 유사도 측정에서 사용하는 가중치를 인공 신경망으로 학습한다. 또한 인터넷에 커뮤니티에 게시된 데이터는 형태소 분석 결과를 신뢰할 수 없는 경우가 많이 발생한다. 따라서 음절 자질을 사용하여 질의를 분석 단계에서 형태소 분석의 영향을 최소화하는 방법을 제안한다. 제안하는 시스템은 Mean Average Precision 기준으로 0.765, R-Precision 기준으로 0.872의 성능을 보여 기존 시스템보다 성능이 우수하다.

잠정적 부적합 문서와 어휘 근접도를 반영한 어휘 그래프 기반 질의 확장 (Query Expansion Based on Word Graphs Using Pseudo Non-Relevant Documents and Term Proximity)

  • 조승현;이경순
    • 정보처리학회논문지B
    • /
    • 제19B권3호
    • /
    • pp.189-194
    • /
    • 2012
  • 본 논문에서는 정보검색 성능 향상을 위해 잠정적 적합 문서 및 부적합 문서와 어휘 그래프를 이용한 질의 확장 방법을 제안한다. 언어모델에 의한 초기 검색 결과 상위 문서들은 질의 어휘 조합과 근접도를 기반으로 핵심 질의를 포함하는 문서들로 구성된 핵심 질의 클러스터와 핵심 질의를 포함하지 않는 문서들로 구성된 비핵심 질의 클러스터로 분류된다. 이때, 핵심 질의 클러스터는 잠정적 적합 문서 집합으로, 비핵심 질의 클러스터는 잠정적 부적합 문서 집합으로 본다. 각 클러스터는 어휘들과 질의 어휘와의 가까운 정도에 따라 어휘 그래프로 표현된다. 각 어휘에 대한 중요도는 핵심 질의 클러스터 그래프에서의 어휘 가중치에서 비핵심 질의 클러스터 그래프에서의 어휘의 가중치를 빼서 계산한다. 이는 부적합 문서에서 높은 가중치를 갖는 어휘는 확장 질의에서 제외시키는 역할을 한다. 중요도가 높은 어휘 순으로 확장할 질의를 선택한다. 웹 문서 테스트컬렉션인 TREC WT10g에서의 실험 결과에서 제안 방법이 언어모델(LM)에 비해 평균 정확률의 평균(MAP)에서 9.4% 성능 향상을 보였다.

지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구 (Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base)

  • 김재헌;이명진
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.43-61
    • /
    • 2019
  • 최근 4차 산업혁명과 함께 인공지능 기술에 대한 연구가 활발히 진행되고 있으며, 이전의 그 어느 때보다도 기술의 발전이 빠르게 진행되고 있는 추세이다. 이러한 인공지능 환경에서 양질의 지식베이스는 인공지능 기술의 향상 및 사용자 경험을 높이기 위한 기반 기술로써 중요한 역할을 하고 있다. 특히 최근에는 인공지능 스피커를 통한 질의응답과 같은 서비스의 기반 지식으로 활용되고 있다. 하지만 지식베이스를 구축하는 것은 사람의 많은 노력을 요하며, 이로 인해 지식을 구축하는데 많은 시간과 비용이 소모된다. 이러한 문제를 해결하기 위해 본 연구에서는 기계학습을 이용하여 지식베이스의 구조에 따라 학습을 수행하고, 이를 통해 자연어 문서로부터 지식을 추출하여 지식화하는 방법에 대해 제안하고자 한다. 이러한 방법의 적절성을 보이기 위해 DBpedia 온톨로지의 구조를 기반으로 학습을 수행하여 지식을 구축할 것이다. 즉, DBpedia의 온톨로지 구조에 따라 위키피디아 문서에 기술되어 있는 인포박스를 이용하여 학습을 수행하고 이를 바탕으로 자연어 텍스트로부터 지식을 추출하여 온톨로지화하기 위한 방법론을 제안하고자 한다. 학습을 바탕으로 지식을 추출하기 위한 과정은 문서 분류, 적합 문장 분류, 그리고 지식 추출 및 지식베이스 변환의 과정으로 이루어진다. 이와 같은 방법론에 따라 실제 지식 추출을 위한 플랫폼을 구축하였으며, 실험을 통해 본 연구에서 제안하고자 하는 방법론이 지식을 확장하는데 있어 유용하게 활용될 수 있음을 증명하였다. 이러한 방법을 통해 구축된 지식은 향후 지식베이스를 기반으로 한 인공지능을 위해 활용될 수 있을 것으로 판단된다.