• Title/Summary/Keyword: Language Model Network

Search Result 386, Processing Time 0.022 seconds

A Study on Word Sense Disambiguation Using Bidirectional Recurrent Neural Network for Korean Language

  • Min, Jihong;Jeon, Joon-Woo;Song, Kwang-Ho;Kim, Yoo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2017
  • Word sense disambiguation(WSD) that determines the exact meaning of homonym which can be used in different meanings even in one form is very important to understand the semantical meaning of text document. Many recent researches on WSD have widely used NNLM(Neural Network Language Model) in which neural network is used to represent a document into vectors and to analyze its semantics. Among the previous WSD researches using NNLM, RNN(Recurrent Neural Network) model has better performance than other models because RNN model can reflect the occurrence order of words in addition to the word appearance information in a document. However, since RNN model uses only the forward order of word occurrences in a document, it is not able to reflect natural language's characteristics that later words can affect the meanings of the preceding words. In this paper, we propose a WSD scheme using Bidirectional RNN that can reflect not only the forward order but also the backward order of word occurrences in a document. From the experiments, the accuracy of the proposed model is higher than that of previous method using RNN. Hence, it is confirmed that bidirectional order information of word occurrences is useful for WSD in Korean language.

Input Dimension Reduction based on Continuous Word Vector for Deep Neural Network Language Model (Deep Neural Network 언어모델을 위한 Continuous Word Vector 기반의 입력 차원 감소)

  • Kim, Kwang-Ho;Lee, Donghyun;Lim, Minkyu;Kim, Ji-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.3-8
    • /
    • 2015
  • In this paper, we investigate an input dimension reduction method using continuous word vector in deep neural network language model. In the proposed method, continuous word vectors were generated by using Google's Word2Vec from a large training corpus to satisfy distributional hypothesis. 1-of-${\left|V\right|}$ coding discrete word vectors were replaced with their corresponding continuous word vectors. In our implementation, the input dimension was successfully reduced from 20,000 to 600 when a tri-gram language model is used with a vocabulary of 20,000 words. The total amount of time in training was reduced from 30 days to 14 days for Wall Street Journal training corpus (corpus length: 37M words).

Burmese Sentiment Analysis Based on Transfer Learning

  • Mao, Cunli;Man, Zhibo;Yu, Zhengtao;Wu, Xia;Liang, Haoyuan
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.535-548
    • /
    • 2022
  • Using a rich resource language to classify sentiments in a language with few resources is a popular subject of research in natural language processing. Burmese is a low-resource language. In light of the scarcity of labeled training data for sentiment classification in Burmese, in this study, we propose a method of transfer learning for sentiment analysis of a language that uses the feature transfer technique on sentiments in English. This method generates a cross-language word-embedding representation of Burmese vocabulary to map Burmese text to the semantic space of English text. A model to classify sentiments in English is then pre-trained using a convolutional neural network and an attention mechanism, where the network shares the model for sentiment analysis of English. The parameters of the network layer are used to learn the cross-language features of the sentiments, which are then transferred to the model to classify sentiments in Burmese. Finally, the model was tuned using the labeled Burmese data. The results of the experiments show that the proposed method can significantly improve the classification of sentiments in Burmese compared to a model trained using only a Burmese corpus.

Hybrid CTC-Attention Network-Based End-to-End Speech Recognition System for Korean Language

  • Hosung Park;Changmin Kim;Hyunsoo Son;Soonshin Seo;Ji-Hwan Kim
    • Journal of Web Engineering
    • /
    • v.21 no.2
    • /
    • pp.265-284
    • /
    • 2021
  • In this study, an automatic end-to-end speech recognition system based on hybrid CTC-attention network for Korean language is proposed. Deep neural network/hidden Markov model (DNN/HMM)-based speech recognition system has driven dramatic improvement in this area. However, it is difficult for non-experts to develop speech recognition for new applications. End-to-end approaches have simplified speech recognition system into a single-network architecture. These approaches can develop speech recognition system that does not require expert knowledge. In this paper, we propose hybrid CTC-attention network as end-to-end speech recognition model for Korean language. This model effectively utilizes a CTC objective function during attention model training. This approach improves the performance in terms of speech recognition accuracy as well as training speed. In most languages, end-to-end speech recognition uses characters as output labels. However, for Korean, character-based end-to-end speech recognition is not an efficient approach because Korean language has 11,172 possible numbers of characters. The number is relatively large compared to other languages. For example, English has 26 characters, and Japanese has 50 characters. To address this problem, we utilize Korean 49 graphemes as output labels. Experimental result shows 10.02% character error rate (CER) when 740 hours of Korean training data are used.

Simple and effective neural coreference resolution for Korean language

  • Park, Cheoneum;Lim, Joonho;Ryu, Jihee;Kim, Hyunki;Lee, Changki
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1038-1048
    • /
    • 2021
  • We propose an end-to-end neural coreference resolution for the Korean language that uses an attention mechanism to point to the same entity. Because Korean is a head-final language, we focused on a method that uses a pointer network based on the head. The key idea is to consider all nouns in the document as candidates based on the head-final characteristics of the Korean language and learn distributions over the referenced entity positions for each noun. Given the recent success of applications using bidirectional encoder representation from transformer (BERT) in natural language-processing tasks, we employed BERT in the proposed model to create word representations based on contextual information. The experimental results indicated that the proposed model achieved state-of-the-art performance in Korean language coreference resolution.

1-Pass Semi-Dynamic Network Decoding Using a Subnetwork-Based Representation for Large Vocabulary Continuous Speech Recognition (대어휘 연속음성인식을 위한 서브네트워크 기반의 1-패스 세미다이나믹 네트워크 디코딩)

  • Chung Minhwa;Ahn Dong-Hoon
    • MALSORI
    • /
    • no.50
    • /
    • pp.51-69
    • /
    • 2004
  • In this paper, we present a one-pass semi-dynamic network decoding framework that inherits both advantages of fast decoding speed from static network decoders and memory efficiency from dynamic network decoders. Our method is based on the novel language model network representation that is essentially of finite state machine (FSM). The static network derived from the language model network [1][2] is partitioned into smaller subnetworks which are static by nature or self-structured. The whole network is dynamically managed so that those subnetworks required for decoding are cached in memory. The network is near-minimized by applying the tail-sharing algorithm. Our decoder is evaluated on the 25k-word Korean broadcast news transcription task. In case of the search network itself, the network is reduced by 73.4% from the tail-sharing algorithm. Compared with the equivalent static network decoder, the semi-dynamic network decoder has increased at most 6% in decoding time while it can be flexibly adapted to the various memory configurations, giving the minimal usage of 37.6% of the complete network size.

  • PDF

Performance Analysis Using a DNN-Based Sign Language Translation Model (DNN 기반 수어 번역 모델을 통한 성능 분석)

  • Min-Jae Jeong;Soong-Hwan Ro;Jun-Ki Hong
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.187-196
    • /
    • 2024
  • In this study, we propose a DNN (Deep Neural Network)-based sign language translation model that can significantly reduce training time by compressing sign language coordinates. We compared and analyzed the accuracy and training time of the model with and without sign language coordinate compression. The results of using the proposed model for sign language translation showed that while the accuracy decreased by approximately 5.9% after compressing the sign language video, the training time was reduced by 56.57%, indicating a substantial gain in training efficiency compared to the loss in translation accuracy.

Design and Implementation of a Network Programming Language (네트워크를 고려한 프로그래밍언어의 설계와 구현)

  • Won, Yu-Hun;Han, Tae-Suk
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.11
    • /
    • pp.1359-1371
    • /
    • 1999
  • 대규모 네트워크 상에서 동작하는 분산 시스템의 구현을 위해 제시된 방법 중의 하나인 이동 코드 개념은 네트워크 공유 자원에 접근할 수 있는 효과적인 방법을 제시하였고 이 개념을 지원하는 많은 언어들의 개발을 가져왔다. 개발된 언어들이 가지고 있는 이동 코드를 지원하기 위한 언어 구문과 적용하려는 문제 영역의 특성을 반영한 언어 구문은 네트워크 프로그래밍을 하는데 있어서 효율과 문제 중심의 프로그램의 두 가지를 모두 가능하게 하고 있다. 본 논문에서는 현재 분산 컴퓨팅 환경에서 가장 많이 사용되고 있는 클라이언트-서버 모델을 확장하여 서버의 자원에 접근할 수 있는 또 다른 방법을 가진 모델을 제시하고, 이 모델을 표현할 수 있는 언어를 설계하였다. 설계된 언어는 이동 코드의 개념을 지원함으로써 대규모 네트워크에서 수행되는 프로그램의 작성을 가능하게 하고, 분산 범위 규칙을 채택함으로써 이동 코드의 기술을 일반 함수를 기술하듯 명확한 관점에서 할 수 있도록 하였다. 또한 네트워크 관련 자원들을 언어 구문으로 채택하여 네트워크 프로그래밍을 언어 수준에서 할 수 있도록 하였다. 언어의 이론적인 설계에 그치지 않고 설계된 언어를 수행할 수 있는 실행 시간 지원 시스템을 구현하였다. 실행 시간 지원 시스템은 언어를 해석하고 실행하는 코드 해석기와 이동 코드를 지원하는 네트워크 감독으로 구성되며 설계된 언어를 사용하여 실제로 네트워크 응용 프로그램을 작성하고 테스트 해 볼 수 있다.Abstract Some studies bring up a concept of code mobility as an innovative way to access network resources in order to develop distributed systems working on a large scale network. After that, many languages are suggested to support this concept. In these languages, language constructors for their particular application domains and mobile codes provide both problem-oriented views to the programmer and reasonable performance to the system. In this thesis, we extend the client-server model that is the most popular model in developing distributed systems these days. We propose a model to have another method to access server's resources and extend the C language to implement the proposed model for the large scale network. The new language has capability to build a software working on a large scale network by supporting mobile code and gives a consistent network programming view to the programmer by adapting distributed semantics. The language also makes network programming easy by providing network primitives at the language level. We implement a prototype of run-time system to support this language. The run-time system is composed of two major parts: code-interpreter that interprets and executes the language and network-daemon that supports mobile codes.

A Unicode based Deep Handwritten Character Recognition model for Telugu to English Language Translation

  • BV Subba Rao;J. Nageswara Rao;Bandi Vamsi;Venkata Nagaraju Thatha;Katta Subba Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.101-112
    • /
    • 2024
  • Telugu language is considered as fourth most used language in India especially in the regions of Andhra Pradesh, Telangana, Karnataka etc. In international recognized countries also, Telugu is widely growing spoken language. This language comprises of different dependent and independent vowels, consonants and digits. In this aspect, the enhancement of Telugu Handwritten Character Recognition (HCR) has not been propagated. HCR is a neural network technique of converting a documented image to edited text one which can be used for many other applications. This reduces time and effort without starting over from the beginning every time. In this work, a Unicode based Handwritten Character Recognition(U-HCR) is developed for translating the handwritten Telugu characters into English language. With the use of Centre of Gravity (CG) in our model we can easily divide a compound character into individual character with the help of Unicode values. For training this model, we have used both online and offline Telugu character datasets. To extract the features in the scanned image we used convolutional neural network along with Machine Learning classifiers like Random Forest and Support Vector Machine. Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMS-P) and Adaptative Moment Estimation (ADAM)optimizers are used in this work to enhance the performance of U-HCR and to reduce the loss function value. This loss value reduction can be possible with optimizers by using CNN. In both online and offline datasets, proposed model showed promising results by maintaining the accuracies with 90.28% for SGD, 96.97% for RMS-P and 93.57% for ADAM respectively.

Large Vocabulary Continuous Speech Recognition Based on Language Model Network (언어 모델 네트워크에 기반한 대어휘 연속 음성 인식)

  • 안동훈;정민화
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.543-551
    • /
    • 2002
  • In this paper, we present an efficient decoding method that performs in real time for 20k word continuous speech recognition task. Basic search method is a one-pass Viterbi decoder on the search space constructed from the novel language model network. With the consistent search space representation derived from various language models by the LM network, we incorporate basic pruning strategies, from which tokens alive constitute a dynamic search space. To facilitate post-processing, it produces a word graph and a N-best list subsequently. The decoder is tested on the database of 20k words and evaluated with respect to accuracy and RTF.