• Title/Summary/Keyword: Language Comprehension

Search Result 243, Processing Time 0.024 seconds

Standardization of the Korean Child Development Inventory (K-CDI 아동발달검사 표준화 연구)

  • Kim, Jeong-Mee;Shin, Hee-Sun
    • Korean Journal of Child Studies
    • /
    • v.27 no.4
    • /
    • pp.39-53
    • /
    • 2006
  • The Korean version of the Child Development Inventory (K-CDI) is a developmental screening test for children functioning in the one-six year range. Based on parent-report, the inventory assesses child developmental functioning in the areas of social, self-help, gross motor, fine motor, expressive language, language comprehension, letter and number skills, general development, and various symptoms and behavior problems. Participants were recruited from childcare centers and private groups and finally 1,143 children and their mothers from 4 locations nationwide participated in this study. Through analysis of item response rate of 270 items in 9 areas, new norm was formed. Reliability determined by internal consistency were relatively high (Cronbach ${\alpha}=.95$). Intercorrelations among sub-scales (range: .49-.96) indicated the construct validity, and the correlation between K-CDI and other screening tests supported the concurrent validity.

  • PDF

Comprehension skill and the efficiency in suppression mechanism in anaphoric reference (이해능력에 따른 대용어 처리시 억압기제의 효율성 차이)

  • Kim, Sun-Joo;Lee, Mahn-Young
    • Annual Conference on Human and Language Technology
    • /
    • 1992.10a
    • /
    • pp.435-443
    • /
    • 1992
  • 본 연구에서는 이해능력수준에 따른 억압기제의 효율성 차이를 대용어 참조 과정을 통해 검증하였다. 실험 1에서는 단어재인과제를 사용하여 이해능력에 따른 가능한 참조어의 활성화 차이를 살펴 보았다. 그 결과 낮은 수준의 이해자는 높은 수준의 이해자에 비해 가능한 참조어 중 문장맥락에 맞는 적절한 참조어와 함께 맥락에 맞지 않는 부적절한 참조어의 활성화도 유지하고 있는 경향이 있었다. 실험 2에서는 검사단어의 맥락적절성 판단과제를 실시하였는데 낮은 수준의 이해자는 높은 수준의 이해자에 비해 부적절한 참조어를 부정하는데 반응시간이 오래 걸렸다. 이 결과들은 낮은 수준의 이해자가 덜 효율적인 억압기제를 가졌다는 가설을 지지하는 결과로 논의되었다.

  • PDF

Understanding Korean Grammar of English-Speaking Beginners Through Eye-tracking Approach -Focused on Presentational Methods of Grammar- (영어권 초급 한국어 학습자의 시선 추적을 통한 문법 이해 양상 연구 -문법 제시 방법을 중심으로-)

  • Kim, Hyunjin;Kang, Seung Hae
    • Journal of Korean language education
    • /
    • v.28 no.4
    • /
    • pp.39-62
    • /
    • 2017
  • This study is to examine grammar understanding with beginner English speakers according to presentational methods of grammatical content. 18 English-speaking Korean beginners were randomly assigned and divided into two groups. We first examined if there was a statistically significant difference between the two groups in grammar comprehension with and without illustrations. It was found that the group given the presentation illustrations showed greater understanding than the group without them. Second, no statistically significant difference in grammar understanding was found between the groups with and without materials marked for their awareness. Third, no statistically significant difference was found between the groups with the order of presenting content elements related to grammatical items. This study is to affirm the importance of illustrations as a component of Korean textbooks.

Machine Reading Comprehension-based Q&A System in Educational Environment (교육환경에서의 기계독해 기반 질의응답 시스템)

  • Jun-Ha Ju;Sang-Hyun Park;Seung-Wan Nam;Kyung-Tae Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.541-544
    • /
    • 2022
  • 코로나19 이후로 교육의 형태가 오프라인에서 온라인으로 변화되었다. 하지만 온라인 강의 교육 서비스는 실시간 소통의 한계를 가지고 있다. 이러한 단점을 해결하기 위해 본 논문에서는 기계독해 기반 실시간 강의 질의응답 시스템을 제안한다. 본 논문연구에서는 질의응답 시스템을 만들기 위해 KorQuAD 1.0 학습 데이터를 활용해 BERT를 fine-tuning 했고 그 결과를 이용해 기계독해 기반 질의응답 시스템을 구축했다. 하지만 이렇게 구축된 챗봇은 강의 내용에 대한 질의응답에 최적화되어있지 않기 때문에 강의 내용 질의응답에 관한 문장형 데이터 셋을 구축하고 추가 학습을 수행하여 문제를 해결했다. 실험 결과 질의응답 표를 통해 문장형 답변에 대한 성능이 개선된 것을 확인할 수 있다.

  • PDF

Machine Reading Comprehension System for Multiple Span Extraction using Span Matrix (Span Matrix를 이용한 다중 범위 추출 기계독해 시스템)

  • Jang, Youngjin;Lee, Hyeon-gu;Shin, Dongwook;Park, Chan-hoon;Kang, Inho;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.31-35
    • /
    • 2021
  • 기계독해 시스템은 주어진 질문에 대한 답변을 문서에서 찾아 사용자에게 제공해주는 질의응답 작업 중 하나이다. 기존의 기계독해는 대부분 문서에 존재하는 짧고 간결한 답변 추출 문제를 풀고자 했으며 최근엔 불연속적인 범위를 추출하는 등의 확장된 문제를 다루는 데이터가 공개되었다. 불연속적인 답변 추출은 실제 애플리케이션에서 사용자에게 정보를 유연하게 제공해줄 수 있다. 따라서 본 논문에서는 기존의 간결한 단일 범위 추출에서 확장된 다중 범위 추출 시스템을 제안하고자 한다. 제안 모델은 문서를 구성하는 모든 토큰의 조합으로 구성된 Span Matrix를 통하여 다중 범위 추출 문제를 해결하고자 하며 실험을 통해 기존 연구들과 비교하여 가장 높은 86.8%의 성능을 보였다.

  • PDF

Adversarial Examples for Robust Reading Comprehension (강건한 질의응답 모델을 위한 데이터셋 증강 기법)

  • Jang, Hansol;Jun, Changwook;Choi, Jooyoung;Sim, Myoseop;Kim, Hyun;Min, Kyungkoo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.41-46
    • /
    • 2021
  • 기계 독해는 문단과 질문이 주어질 때에 정답을 맞추는 자연어처리의 연구분야다. 최근 기계 독해 모델이 사람보다 높은 성능을 보여주고 있지만, 문단과 질의가 크게 변하지 않더라도 예상과 다른 결과를 만들어 성능에 영향을 주기도 한다. 본 논문에서는 문단과 질문 두 가지 관점에서 적대적 예시 데이터를 사용하여 보다 강건한 질의응답 모델을 훈련하는 방식을 제안한다. 트랜스포머 인코더 모델을 활용하였으며, 데이터를 생성하기 위해서 KorQuAD 1.0 데이터셋에 적대적 예시를 추가하여 실험을 진행하였다. 적대적 예시를 이용한 데이터로 실험한 결과, 기존 모델보다 1% 가량 높은 성능을 보였다. 또한 질의의 적대적 예시 데이터를 활용하였을 때, 기존 KorQuAD 1.0 데이터에 대한 성능 향상을 확인하였다.

  • PDF

Korean Coreference Resolution using Machine Reading Comprehension (기계 독해 기술을 이용한 한국어 대명사 참조해결)

  • Lee, Dong-heon;Kim, Ki-hun;Lee, Chang-ki;Ryu, Ji-hee;Lim, Joon-ho
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.151-154
    • /
    • 2020
  • 대명사 참조해결은 문서 내에 등장하는 대명사와 이에 대응되는 선행사를 찾는 자연어처리 태스크이다. 기계 독해는 문단과 질문을 입력 받아 질문에 해당하는 알맞은 정답을 문단 내에서 찾아내는 태스크이며, 최근에는 주로 BERT 기반의 모델이 가장 좋은 성능을 보이고 있다. 이러한 BERT 기반 모델의 성공에 따라, 최근 여러 연구에서 자연어처리 태스크를 기계 독해 문제로 변환하여 해결하는 연구들이 진행되고 있다. 본 논문에서는 최근 여러 자연어처리에서 뛰어난 성능을 보이고 있는 BERT 기반 기계 독해 모델을 이용하여 한국어 대명사 참조해결 연구를 진행하였다. 사전 학습 된 기계 독해 모델을 사용하여 한국어 대명사 참조해결 데이터로 fine-tuning하여 실험한 결과, 개발셋에서 EM 78.51%, F1 84.79%의 성능을 보였고, 평가셋에서 EM 70.78%, F1 80.19%의 성능을 보였다.

  • PDF

Web-Scale Open Domain Korean Question Answering with Machine Reading Comprehension (기계 독해를 이용한 웹 기반 오픈 도메인 한국어 질의응답)

  • Choi, DongHyun;Kim, EungGyun;Shin, Dong Ryeol
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.87-92
    • /
    • 2019
  • 본 논문에서는 기계 독해를 이용한 웹 기반 오픈 도메인 한국어 질의응답 시스템에 대하여 서술한다. 하나의 사용자 질의에 대하여, 본 논문에서 제안된 시스템은 기 존재하는 검색 엔진을 이용하여 실시간으로 최대 1,500 개의 문서를 기계 독해 방식으로 분석하고, 각 문서별로 얻어진 답을 종합함으로써 최종 답변을 도출한다. 실험 결과, 제안된 시스템은 평균적으로 2초 이내의 실행 시간을 보였으며, 사람과 비교하여 86%의 성능을 나타내었다. 본 논문에서 제안된 시스템의 데모는 http://nlp-api.kakao.com에서 확인 가능하다.

  • PDF

Machine Reading Comprehension System using Sentence units Representation (문장 표현 단위를 활용한 기계독해 시스템)

  • Jang, Youngjin;Lee, Hyeon-gu;Shin, Dongwook;Park, Chan-hoon;Kang, Inho;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.568-570
    • /
    • 2021
  • 기계독해 시스템은 주어진 질문에 대한 답변을 문서에서 찾아 사용자에게 제공해주는 질의응답 작업 중 하나이다. 하지만 대부분의 기계독해 데이터는 간결한 답변 추출을 다루며, 이는 실제 애플리케이션에서 유용하지 않을 수 있다. 실제 적용 단계에서는 짧고 간결한 답변 뿐 아니라 사용자에게 자세한 정보를 제공해줄 수 있는 긴 길이의 답변 제공도 필요하다. 따라서 본 논문에서는 짧은 답변과 긴 답변 모두 추출할 수 있는 모델을 제안한다. 실험을 통해 Baseline과 비교하여 짧은 답변 추출에서는 F1 score 기준 0.7%, 긴 답변 추출에는 1.4%p의 성능 향상을 보이는 결과를 얻었다.

  • PDF

PALM for Improving Korean T5: Application to Machine Reading Comprehension & Text Summarization (PALM 기반 한국어 T5 개선: 기계독해 및 텍스트 요약으로의 응용)

  • Park, Eunhwan;Na, Seung-Hoon;Lim, Joon-Ho;Kim, Tae-Hyeong;Choi, Yun-Su;Chang, Du-Seong
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.501-504
    • /
    • 2021
  • 최근 언어 모델은 분류, 기계 독해, 생성 등의 태스크에서 성공적인 결과를 보여주고 있다. 본 논문에서는 최근 많은 관심을 받고 있는 인코더-디코더 구조의 언어 모델인 BART, T5 그리고 PALM을 위키피디아 한국어 데이터 집합으로 사전 학습한 후 기계 독해와 문서 생성 요약 태스크에 대하여 미세 조정을 하고 성능 비교를 한다.

  • PDF