• Title/Summary/Keyword: Langmuir 등온흡착 모델

Search Result 86, Processing Time 0.022 seconds

Altered Langmuir Adsorption Isotherm under the Consideration of the Displacement of Water Molecules with Adsorbate Ion at the Surface of Adsorbent (흡착제(吸着劑) 표면(表面)에서의 흡착질(吸着質)과 물분자(分子)의 치환(置換)을 고려(考慮)한 수정(修正) Langmuir 등온흡착식(等溫吸着式))

  • Kim, Dong-Su
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.81-86
    • /
    • 2006
  • Altered Langmuir adsorption isotherm has been suggested for adsorption reactions occurring in aqueous environment based upon the concept of the steric displacement between adsorbates and water molecules at the surface of adsorbent. For the adsorption of $Cd^{2+}$ on activated carbon, the suggested adsorption isotherm was shown to be more well applied to the experimental results compared with the classical Langmuir adsorption isotherm. Based on this, regarding the adsorption system which following the Langmuir model more precise design and controllable operation of the process were considered to be attainable when the adsorption process is analyzed employing the altered adsorption isotherm.

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(1) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(1)-흡착등온식을 이용한 평가)

  • Na, Choon-Ki;Han, Moo-Young;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.606-616
    • /
    • 2011
  • The objectives of this study were to evaluate the applicability of adsorption models for adsorption properties of adsorbents. For this study, adsorption experiment of $NO_3^-$ ion using anion exchange resin has been investigated under adsorption equilibrium and kinetic in bach process. Adsorption equilibrium experiment were carried out that two conditions is change of adsorbate concentration and change of adsorbent weight. Experiment results have been analyzed by adsorption isotherm models, energy models and kinetic models. Under the condition of change of adsorbate concentration was best described by Sips and Redlich-Perterson isotherm models. However case of change of adsorbent weight was described by Langmuir isotherm models. It seems reasonable to assume that isotherm model was dominated by multiple mechanism according to experiment condition.

Adsorption Characteristics of Copper using Biochar Derived from Exhausted Coffee Residue (커피찌꺼기 biochar를 활용한 구리의 흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Yeong-Jin;Kim, Seong-Heon;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • BACKGROUND: There is very limited knowledge of the effects of biochar derived from exhausted coffee residue on metal adsorption processes. Furthermore, only limited information is available on the adsorption mechanism of copper. The aim of this study was to evaluate the absorption behaviors of copper by biochar derived from exhausted coffee residue. METHODS AND RESULTS: Biochars produced by pyrolysis of exhausted coffee residue at $300^{\circ}C$(CB300) and $600^{\circ}C$(CB600) were characterized and investigated as adsorbents for the removal of copper from aqueous solution. The results indicated that the adsorption equilibrium was achieved around 2 h and the pseudo-second-order kinetic model fit the data better than the pseudo-first-order kinetic model. The maximum Cu adsorption capacities of CB600 by Freundlich and Langmuir isotherms were higher than those of CB300. The adsorption data were well described by a Langmuir isotherm compare to Freundlich isotherm. CONCLUSION: Our results suggest that exhausted coffee residue can be used as feedstock materials to produce high quality biochar, which could be used as adsorbents to removal copper.

Analysis for Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Aniline Blue Using Activated Carbon (활성탄을 이용한 아닐린 블루의 흡착평형, 동역학 및 열역학 파라미터에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.679-686
    • /
    • 2019
  • Characteristics of adsorption equilibrium, kinetic and thermodynamic of aniline blue onto activated carbon from aqueous solution were investigated as function of initial concentration, contact time and temperature. Adsorption isotherm of aniline blue was analyzed by Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models. Langmuir isotherm model fit better with isothermal data than other isotherm models. Estmated Langmuir separation factors ($R_L=0.036{\sim}0.068$) indicated that adsorption process of aniline blue by activated carbon could be an effective treatment method. Adsorption kinetic data were fitted to pseudo first order model, pseudo second order model and intraparticle diffusion models. The kinetic results showed that the adsorption of aniline blue onto activated carbon well followed pseudo second-order model. Adsorption mechanism was evaluated in two steps, film diffusion and intraparticle diffusion, by intraparticle diffusion model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy for adsorption process were estimated. Enthalpy change (48.49 kJ/mol) indicated that this adsorption process was physical adsorption and endothermic. Since Gibbs free energy decreased with increasing temperature, the adsorption reaction became more spontaneously with increasing temperature. The isosteric heat of adsorption indicated that there is interaction between the adsorbent and the adsorbate because the energy heterogeneity of the adsorbent surface.

Sorption Characteristics of Arsenic on Furnace Slag by Adsorption Isotherm and Kinetic Sorption Experiments (등온 및 동적 흡착 실험을 통한 제강 슬래그의 비소 흡착 특성)

  • Oh, Cham-Teut;Rhee, Sung-Su;Igarashi, Toshifumi;Kon, Ho-Jin;Lee, Won-Taek;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.37-45
    • /
    • 2010
  • Sorption characteristics of arsenic on furnace slag were investigated to remove arsenic from groundwater using furnace slag, which is industrial waste generated from steel company. Adsorption isotherm experiments and kinetic sorption experiments were performed and the chemical characteristics of supernatants from these experiments were analyzed. Results showed that all supernatants were alkaline (above pH 9) and the highest ion concentration in the solution was found with calcium (30~50 mg/L). Results of adsorption isotherms were more adequately described by the Freundlich model than Langmuir model. From adsorption isotherms experiments, it was noted that the adsorption amount of As(V) was 87% higher than that of As(III). Results of kinetic sorption experiments were more properly fitted by pseudo second order (PSO) model than pseudo first order model. Equilibrium adsorption amount ($q_e$) and relaxation time ($t_r$) calculated from PSO model increased with initial concentration of arsenic. Equilibrium adsorption amount of As(V) was higher than that of As(III) and relaxation time of As(V) was shorter than that of As(III). Adsorption isotherm results could be predicted by kinetic adsorption results, since equilibrium adsorption amount calculated through PSO model generally agreed with equilibrium adsorption amount measured from adsorption isotherm.

Adsorption of Cadmium, Copper, and Lead on Sphagnum Peat Moss (Sphagnum 피트모스에서의 카드뮴, 구리, 납의 흡착)

  • Bang Sun-Baek;Lee Sang-Woo;Kim Ju-Yong;Yu Dong-Il;Kang Yong-Kon;Kim Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.103-109
    • /
    • 2006
  • Batch adsorption experiments were performed to adsorb cadmium [Cd(II)], copper [Cu(II)], and lead [Pb(II)] onto sphagnum peat moss. According to the results, 10-50 mg/L of Cd(II), Cu(II), and Pb(II) were effectively adsorbed and removed within 1 h by 1.0 g/L of sphagnum peat moss. The amounts of Cd(II), Cu(II), and Pb(II) adsorbed on sphagnum peat moss increased with increasing the initial concentrations. The kinetics for the adsorption of Cd(II), Cu(II), and Pb(II) on sphagnum peat moss was described well using the pseudo-second order model at different initial concentrations. The maximum adsorption capacities calculated from the Langmuir isotherm for Cd(II), Cu(II), and Pb(III) were 33.90, 29.15, and 91.74 mg/g, respectively. Experimental results showed that sphagnum peat moss was a very effective adsorbent on the adsorption of Cd(II), Cu(II), and Pb(II).

Adsorption Characteristics of 2,4-Dichlrophenol by Magnetic Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 자성 활성탄을 이용한 2,4-디클로로페놀의 흡착특성)

  • Kam, Sang-Kyu;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.388-394
    • /
    • 2018
  • The removal of 2,4-dichlorophenol (2,4-dichlorophenol, 2,4-DCP) in aqueous solution was studied using the magnetic activated carbon (MAC) prepared from waste citrus peel. The adsorption characteristics of 2,4-DCP by MAC were investigated by varying the contact time, MAC dose, solution temperature, pH and 2,4-DCP concentration. The isothermal adsorption data were well explained by the Langmuir isotherm model equation and the maximum adsorption capacity calculated from the Langmuir isotherm equation was 312.5 mg/g. The adsorption kinetic data were well described by the pseudo-second-order reaction equation. The intraparticle diffusion model data indicated that both the film and intraparticle diffusion occur simultaneously during the adsorption process. The thermodynamic parameters of ${\Delta}H^o$ and ${\Delta}G^o$ have positive and negative values, respectively, indicating that the adsorption of 2,4-DCP by MAC is a spontaneous endothermic reaction. After the adsorption experiment was completed, the used MAC could be easily separated by an external magnet.

Adsorption Characteristics of Antibiotics Amoxicillin in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 활성탄을 이용한 수중의 항생제 Amoxicillin의 흡착 특성)

  • Kam, Sang-Kyu;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.369-375
    • /
    • 2018
  • Batch experiments were conducted to investigate the effects of operating parameters such as the temperature, initial concentration, contact time and adsorbent dosage on the adsorption of antibiotics amoxicillin (AMX) by waste citrus peel based activated carbon (WCAC). The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of AMX by WCAC calculated from the Langmuir isotherm model was 125 mg/g. The adsorption of AMX by WCAC shows that the film diffusion (external mass transfer) and the intraparticle diffusion occur simultaneously during the adsorption process. The adsorption rate is more influenced by the intraparticle diffusion than that of the external mass transfer as the particle size of WCAC increases, and the intraparticle diffusion is the rate controlling step. The thermodynamic parameters indicated that the adsorption reaction of AMX by WCAC was an endothermic and spontaneous process.

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(III) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(III) - 열역학적 특성을 중심으로)

  • Na, Choon-Ki;Jeong, Jin-Hwa;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.260-269
    • /
    • 2012
  • The aim of this study is to evaluate the applicability of adsorption models for understanding the thermodynamic properties of adsorption process. For this study, the adsorption isotherm data of $NO_3$-N ion onto a commercial anion exchange resin obtained at various experimental conditions, i.e. different initial concentrations of adsorbate, different dosages of adsorbent, and different temperatures, were used in calculating the thermodynamic parameters and the adsorption energy of adsorption process. The Gibbs free energy change (${\Delta}G^0$) of adsorption process could be calculated using the Langmuir constant $b_M$ as well as the Sips constant, even though the results were significantly dependant on the experimental conditions. The thermodynamic parameters such as standard enthalpy change (${\Delta}H^0$), standard entropy change (${\Delta}S^0$) and ${\Delta}G^0$ could be calculated by using the experimental data obtained at different temperatures, if the adsorption data well fitted to the Langmuir isotherm model and the plot of ln b versus 1/T gives a straight line. As an alternative, the empirical equilibrium constant(K) defined as $q_e/C_e$ could be used for evaluating the thermodynamic parameters instead of the Langmuir constant. The results from the applications of D-R model and Temkin model to evaluate the adsorption energy suggest that the D-R model is better than Temkin model for describing the experimental data, and the availability of Temkin model is highly limited by the experimental conditions. Although adsorption energies determined using D-R model show significantly different values depending on the experimental conditions, they were sufficient to show that the adsorption of $NO_3$-N onto anion exchange resin is an endothermic process and an ion-exchange process.

Adsorption of Pb(II) by Cherry (Prunus x yedoensis) Leaf-Derived Biochar (왕벚나무 잎으로 제조된 바이오차의 Pb(II) 흡착특성)

  • Lee, Myoung-Eun;Hwang, Kyu-Taek;Kim, Sun-Young;Chung, Jae-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.33-41
    • /
    • 2018
  • Large amounts of leaves from street trees fall onto the streets annually and need to be cleaned and treated. Cherry trees are common street trees in Korea. The adsorption characteristics of Pb(II) by cherry leaf (CL) and cherry leaf-derived biochar (CB) were studied through a series of batch experiments. CB was produced through the carbonization of CL at $800^{\circ}C$ for 90 min. Carbonization increased the C content and pH value, while decreased H and O contents. Well developed pore structure was observed at the surface of CB. The pseudo-second order model better described the kinetics of Pb(II) adsorption onto CL and CB, indicating that the rate-limiting step of the heavy metal sorption is chemical sorption. Fast adsorption rates and high adsorption capacities were obtained by the carbonization from CL to CB. Langmuir models better adequately described the Pb(II) adsorption onto CL and CB. Maximum adsorption capacities of Pb(II) expressed by Langmuir constant, $Q^0$ were 37.31 mg/g and 94.34 mg/g, when CL and CB were used as adsorbents, respectively.