• Title/Summary/Keyword: Langley regression

Search Result 1, Processing Time 0.014 seconds

Retrieval of Atmospheric Optical Thickness from Digital Images of the Moon (월면 디지털 영상 분석을 이용한 대기 광학두께 산출)

  • Jeong, Myeong-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.555-568
    • /
    • 2013
  • Atmospheric optical thickness during nighttime was estimated in this study using analysis on the images of the moon taken from commercial digital camera. Basically the Langely Regression method was applied to the observations of the moon for the cloudless and optically stable sky conditions. The spectral response functions for the red(R), green(G), and blue(B) channels were employed to derive effective wavelength centers of each channel for the observations of the moon, and the correspondent Rayleigh optical thickness were also calculated. Aerosol optical thickness (AOT) was calculated by subtracting Rayleigh optical thickness from the atmospheric optical thickness derived from the Langley regression method. As there are only handful of nighttime AOT observations, the AOT from the moon observations was compared with the AOT from sun-photometers and the MODIS satellite sensor, which was taken several hours before the moon observations of this study. As a result, the values of AOT from moon observations agree with those from sun-photometers and MODIS within 0.1 for the R, G, B channels of the digital camera. On the other hand, ${\AA}$ngstr$\ddot{o}$m Exponent seems to be subject to larger errors due to its sensitiveness to the spectral errors of AOT. Nevertheless, the results of this study indicate that the method reported in this study is promising as it can provide nighttime AOT relatively easily with a low cost instrument like digital camera. More observations and analyses are warranted to attain improved nighttime AOT observations in the future.