• Title/Summary/Keyword: Langendorff heart

Search Result 70, Processing Time 0.029 seconds

Effects of Cyclobuxine D on the Derangement Induced by Ischemia and Reperfusion in the Isolated Rat Heart (Ischemia에 의해 유발된 흰쥐의 적출 심장 손상에 대한 Cyclobuxine D의 보호효과)

  • Lee, Jong-Hwoa;Moon, Chang-Kyu;Kwon, Jun-Tack;Cho, Byung-Heon;Kim, Yu-Jae;Kim, Jong-Bae;Kim, Chang-Ho;Cha, Young-Deog;Kim, Young-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 1990
  • Cyclobuxine D is a steroidal alkaloid, which was extracted from Buxus microphylla var. koreana Nakai. In our previous studies, we clarified several pharmacological actions of cyclobuxine D: an antiinflammatory action, hypotensive and bradycardiac effects, negative inotropic effects on the several smooth muscles and cardiac muscle. The present study was undertaken to elucidate possible mechanisms by protection of myocardial tells from ischemia and reperfusion induced derangement in cardiac function and metabolism by cyclobuxine D. For this purpose, the isolated rat heart was used. Rat hearts were perfused for 60 min under ischemia conditions in the presence and absence of cyclobuxine D and verapamil, and for 30 min under reperfusion conditions. Ischemia produced a marked decline in contractile force, an increase of resting tension, an immediate release of ATP metabolites and an accumulation of calcium in the left ventricle. Cyclobuxine D (100ng/ml) ameliorated the myocardial injury produced by ischemia.

  • PDF

Effect of Strontium on Norepinephrine Induced Positive Intoropic Effect of Isolated Perfused Rat Hearts (흰쥐 적출심장의 Norepinephrine 유발 양성 변력성작용에 미치는 Strontium의 영향)

  • Kwon, Oh-Cheal;Lee, Kwang-Youn
    • Journal of Yeungnam Medical Science
    • /
    • v.5 no.2
    • /
    • pp.59-69
    • /
    • 1988
  • This study was designed to investigate the effect of substitution of strontium for calcium on mechanical activity in isolated perfused spontaneously beating rat hearts. The mechanical activity of the hearts of Langendorff's preparation in conditions of low calcium and strontium-substitution for calcium was compared. The effect of norepinephrine and verapamil were also observed in those conditions. The results were as follows : 1. In low calcium, the mechanical activity of the heart preparation was significantly reduced, but when the equimolar strontium was substituted for the reduced calcium, the activity was kept at similar level to the normal condition. 2. When equimolar strontium was substituted for the total calcium in perfusate, the heart preparation stopped its beating, and it was not restored in spite of reperfusion with normal calcium perfusate. 3. Norepinephrine-induced positive inotropic effect was inhibited in low-calcium condition especially with low concentration of norepinephrine, but not in strontium-substitution for calcium. 4. Verapamil reduced the activity of the heart both in low-calcium and strontium-substitution as well as in normal calcium conditions. From above results, it was concluded that strontium served as a substitute of calcium in maintaining mechanical activity and in responsiveness to norepinephrine, and the influx of strontium through cell membrane is inhibited by verapamil as the influx of calcium.

  • PDF

Effects of Diltiazem on Isoproterenol-induced Myocardial Cell Wounding in the Rabbit (Isoproterenol 투여로 유발된 심근세포 손상에 미치는 diltiazem의 영향)

  • Kim, Hyun;Chang, Dae-Yung;Rah, Bpng-Jin;Kim, Ho-Dirk
    • Applied Microscopy
    • /
    • v.27 no.2
    • /
    • pp.121-130
    • /
    • 1997
  • It has been demonstrated that majority of cells in the mammalian body such as myocytes and epithelial cells of skin and intestine respond to mechanical force or environmental factors and exhibit partial disruption of cell membrane, i. e., cell wounding, even in a physiological condition. Myocardial cells are rather apt to be wounded than other cells since they are definitely exposed to mechanical stress by contraction-relaxation and blood flow. However, the mechanism how myocardial cells protect themselves against cell wounding is not yet clarified. On this background, the present study was performed to elucidate whether albumin leakage is related to cell wounding and to assess whether diltiazem, a potent calcium channel blocker, is beneficial in isoproterenol-induced cell wounding in the heart. Hearts isolated from New Zealand White rabbits ($1.5\sim2.0kg$ body weight, n=20) were perfused with Tyrode solution by Langendorff technique. After stabilization of baseline hemodynamics, the hearts were subjected to bolus administration of isoproterenol and diltiazem as following order: $1.6{\mu}M$ isoproterenol at zero min (the beginning point): $16{\mu}M$ diltiazem at 20min; $1.6{\mu}M$ isoproterenol at 25min; $16{\mu}M$ isoproterenol at 45 min; $160{\mu}M$ diltiazem at 65 min; $16{\mu}M$ isoproterenol at 70 min. During all experiments, the left ventricular function was recorded, albumin leakage in the coronary effluents was analyzed by electrophoresis and Western blot, and myocardial cell membranes were examined by conventional transmission electron microscopy. Data were analyzed by t-test and linear regression test. Isoproterenol significantly increased the inotropic and chronotropic contractions, coronary flow, and frequency of arrhythmia, however, diltiazem did not influence on hemodynamics except decrease in the frequency of arrhythmia and a slight decrease in contractility. Isoproterenol also resulted partial disruption of myocardial cell membrane and inclose in albumin leakage, while diltiazem pretreatment showed number of electron-dense plaques in the cell membrane and a tendency of decrease in albumin leakage. These results indicate that albumin leakage may be an indirect index of cell wounding in the heart and diltiazem nay be beneficial to protect myocardial cells against isoproterenol-induced cell wounding. It is likely that diltiazem promotes resealing process of the cell membrane.

  • PDF

Comparative Study of Prolonged Preservation Methods in Rabbit Heart for Transplantation (이식을 위한 가토심장의 장기 보존방법에 관한 비교 연구)

  • Jo, Hyeong-Gon;Kim, Su-Hyeon;Kim, Song-Myeong
    • Journal of Chest Surgery
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • The successful cardiac transplantation depends partly on the donor heart preservation by a solution that will ensure recovery of myocardial function. The purpose of this study was to perform the evaluation of various preservation solutions and to accumulate the data on the requisites for ideal preservation solution. The experimental setup was the constant pressure Langendorffs perfusion system. Isolated rabbit hearts were perfused for 20minutes with unarm Krebs-Henseleit solution, stored for 4 hours in cold preservation solution after cardioplegia, and then were reperfused for 20minutes. The 4 experimental groups were prepared Hartmann's solution group (group 1, control), modified Euro-collins solution group(group II. MEC), modified University of Wisconsin group (group n, MUW), and CK solution(made by the author) group (group W, CK). The parameters for assessing the preservation ability were levels of enzymes in freezed myocardial tissues (lactate, creatine kinase-MB and adenosine deaminase), coronary flow. left ventricular developing pressure and dpldt. In conclusion, the ability of preservation for isolated rabbit heart was excellent in CK solution and modified University of Wisconsin solution, and poor in modified Euro-collins solution, compared with Hartmann solution. CK solution has low potassium concentrations(34.2mEq/L) and includes various substrates to be salutary on myocardial preservation. This fact may indicates the necessity of further refinements in selection or composition of electrolytes and substrates.

  • PDF

Ischemic Preconditioning and Its Relation to Glycogen Depletion (허혈성 전처치와 당원 결핍과의 관계)

  • 장대영;김대중;원경준;조대윤;손동섭;양기민;라봉진;김호덕
    • Journal of Chest Surgery
    • /
    • v.33 no.7
    • /
    • pp.531-540
    • /
    • 2000
  • Baclgrpimd; Recent studies have suggested that the cardioprotective effect of ischemic preconditioning(IP) is closely related to glycogen depletion and attenuation of intracellular acidosis. In the present study, the authors tested this hypothesis by perfusion isolated rabbit hearts with glucose(G) is closely related to glycogen depletion and attenuation of intracellular acidosis. In the present study, the authors tested this hypothesis by perfusion isolated rabbit hearts with glucose(G)-free perfusate. Material and Method; Hearts isolated from New Zealand white rabbits(1.5~2.0 kg body weight) were perfused with Tyrode solution by Langendorff technique. After stabilization of baseline hemodynamics, the hearts were subjected to 45 min global ischemia followed by 120 min reperfusion with IP(IP group, n=13) or without IP(ischemic control group, n=10). IP was induced by single episode of 5 min global ischemia and 10 min reperfusion. In the G-free preconditioned group(n=12), G depletion was induced by perfusionwith G-free Tyrode solution for 5 min and then perfused with G-containing Tyrode solution for 10 min; and 45 min ischemia and 120 min reperfusion. Left ventricular functionincluding developed pressure(LVDP), dP/dt, heart rate, left ventricular end-distolic pressure(LVEDP) and coronary flow (CF) were measured. Myocardial cytosolic and membrane PKC activities were measured by 32P-${\gamma}$-ATP incorporation into PKC-specific peptide and PKC isozymes were analyzed by Western blot with monoclonal antibodies. Infarct size was determined by staining with TTC(tetrazolium salt) and planimetry. Data were analyzed by one-way analysis of variance (ANOVA) and Turkey's post-hoc test. Result ; In comparison with the ischemic control group, IP significantly enhanced functional recovery of the left ventricle; in contrast, functional significantly enhanced functional recovery of the left ventricle; in contrast, functional recovery were not significantly different between the G-free preconditioned and the ischemic control groups. However, the infarct size was significantly reduced by IP or G-free preconditioning(39$\pm$2.7% in the ischemic control, 19$\pm$1.2% in the IP, and 15$\pm$3.9% in the G-free preconditioned, p<0.05). Membrane PKC activities were increased significantly after IP (119%), IP and 45 min ischemia(145%), G-free [recpmdotopmomg (150%), and G-free preconditioning and 45 min ischemia(127%); expression of membrane PKC isozymes, $\alpha$ and $\varepsilon$, tended to be increased after IP or G-free preconditioning. Conclusion; These results suggest that in isolated Langendorff-perfused rabbit heart model, G-free preconditioning (induced by single episode of 5 min G depletion and 10 min repletion) colud not improve post-ischemic contractile dysfunction(after 45-minute global ischemia); however, it has an infarct size-limiting effect.

  • PDF

Effects of in vivo-stresses on the Activities of the Myocardial Antioxidant Enzymes and the Ischemia-Reperfusion Injury in Rat Hearts (스트레스성 자극에 의한 항산화효소 유도와 허혈/재관류 심장 보호효과)

  • 박종완;김영훈;김명석
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.161-168
    • /
    • 1995
  • It has been found that various stress challenges induce the myocardial antioxidant enzymes and produce an acquisition of the cellular resistance to the ischemic injury in animal hearts. Most of the stresses, however, seem to be guite dangerous to an animal's life. In the present study, therefore, we tried to search for safely applicable stress modalities which could lead to the induction of antioxidant enzymes and the production of myocardial tolerance to the ischemia-reperfusion injury. Male Sprague-Dawley rats (200-250 g) were exposed to various non-fatal stress conditions, i.e., hyperthermia (environmental temperature of $42^{\circ}C$ for 30 min, non-anesthetized animal), iramobilization (60 min), treadmill exercise (20 m/min, 30min), swimming (30 min), and hyperbaric oxyflenation (3 atm, 60 min), once a day for 5 days. The activities of myocardial antioxidant enzymes and the ischemia-reperfusion injury of isolated hearts were evaluated at 24 hr after the last application of the stresses. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase (G6PD), were assayed in the freshly excised ventricular tissues. The ischemia-reperfusion injury was produced by 20 min-global ischemia followed by 30 min-reperfusion using a Langendorff perfusion system. In swimming and hyperbaric oxygenation groups, the activities of SOD and G6PD increased significantly and in the hyperthermia group, the catalase activity was elevated by 63% compared to the control. The percentile recoveries of cardiac function at 30 min of the post-ischemic reperfusion were 55.4%, 73.4%, and 74.2% in swimming, the hyperbaric oxygenation and the hyperthermia groups, respectively. The values were significantly higher than that of the control (38.6%). In additions, left ventricular end-diastolic pressure and lactate dehydrogenase release were significantly reduced in the stress groups. The results suggest that the antioxidant enzymes in the heart could be induced by the apparently safe in vivo-stresses and this may be involved in the myocardial protection from the ischemia-reperfusion injury.

  • PDF

Conversion of Myocardial Xanthine Oxidase in Ischemic Heart of Rat (허혈심근 Xanthine Oxidase 의 전환에 관한 연구)

  • 박창권
    • Journal of Chest Surgery
    • /
    • v.21 no.5
    • /
    • pp.803-815
    • /
    • 1988
  • The present experiments were performed to confirm the hypothesis that xanthine oxidase[XOD], as a source and mechanism of oxygen radical production, plays an important role in the genesis of the reperfusion injury of ischemic myocardium. The experimental ischemic-reperfusion injury was induced in isolated, Langendorff preparations of rat hearts by 60 min. Of global ischemia with aortic clamping followed by 20 min. of reperfusion with oxygenated Krebs-Henseleit solution[pH 7.4, 37*C]. The results were as follows: 1. The releases of creatine phosphokinase and a lipid peroxidation product, malondialdehyde[MDA] into the coronary effluent were abruptly increased upon reperfusion of ischemic hearts. The increases of the enzyme and MDA were suppressed significantly in the hearts removed from rats pretreated with allopurinol, a specific XOD inhibitor[20mg/kg, oral, 24 hrs and 2 hrs before study]. This effect of allopurinol was comparable to that of oxygen radical scavengers, superoxide dismutase[5, 000U] and catalase[12, 500 U]. 2. The increased SOD-inhibitable reduction of ferricytochrome C, which was infused to the hearts starting with reperfusion, was significantly suppressed in allopurinol pretreated hearts. 3. Activities of myocardial XOD were compared in the normal control hearts and the ischemic ones. Total enzyme activities were not different in both hearts. However, comparing with the control, the ischemic ones showed higher activity in 0-form and lower activities in D-form and D/O-form. 4. In the ischemic hearts, phenylmethylsulfonyl fluoride, a serine protease inhibitor, prevented significantly the increase of 0-form and the decreases of D and D/O-form, while thiol reagents did not affect the changes of the enzyme. 5. The increase of 0-form and the decreases of D and D/0-form were not significant in both calcium-free perfused and pimozide, a calmodulin inhibitor, treated ischemic hearts. 6. The SOD-inhibitable reduction of ferricytochrome C were suppressed by PMSF and pimozide treatment as well as by calcium-free perfusion. It is suggested from these results that in the ischemic rat myocardium, xanthine oxidase is converted to oxygen radical producing 0-form by calcium, calmodulin-dependent proteolysis and plays a contributing role in the genesis of ischemic-reperfusion injury by producing oxygen free radicals.

  • PDF

Synthesis and Smooth Muscle-Selective Relaxant Activity of a Piperidine Analogue: 1-(4'-Fluorophenacyl)-4-Hydroxy-4-Phenyl-Piperidinium Chloride

  • Taqvi, Syed Intasar Hussain;Ghayur, Muhammad Nabeel;Gilani, Anwarul Hassan;Saify, Zafar Saeed;Aftab, Mohammad Tariq
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • The antispasmodic and vasodilator activities of a newly synthesized piperidine derivative (1-(4'fluorophenacyl)-4-hydroxy-4-phenyl-piperidinium chloride) were studied in vitro. The test compound exhibited a dose-dependent relaxant effect on the spontaneous and $K^+$ (75 mM)-induced contractions of isolated rabbit jejunum with respective $EC_{50}$ values of 0.01 mM(0.01-0.02, 95% CI) and 0.30 mM (0.17-0.56). The $Ca^{++}$ channel blocking (CCB) activity was confirmed when the test compound (0.1-0.2 mM) shifted the $Ca^{++}$ dose-response curves to the right, similar to that produced by verapamil ($0.1-1.0{\mu}M$), a standard CCB. In the isolated rabbit aorta, the test compound showed a dose-dependent vasodilator effect on $K^+$ (75 mM)-induced contractions with an $EC_{50}$ value of 0.08 mM (0.02-0.26) while also suppressed the norepinephrine ($1{\mu}M$) control peak responses with $EC_{50}$ value of 0.08 mM (0.05-0.13, n=5). When tested in Langendorff perfused rabbit heart preparation, the test compound exhibited a negligible inhibitory effect on the rate or force of atrial and ventricular contractions when tested up to 5 mM. The results show smooth muscle-selective relaxant effect of the test compound on intestinal and vascular preparations mediated possibly via blockade of voltage and receptor-operated $Ca^{++}$ channels.

Cardioprotective Effects of Low Dose Bacterial Lipopolysaccharide May Not Be Directly Associated with Prostacyclin Production

  • Moon, Chang-Hyun;Kim, Ji-Young;Lee, Soo-Hwan;Baik, Eun-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.331-343
    • /
    • 1998
  • Sublethal dose of bacterial lipopolysaccharide (LPS) would induce protection against cardiac ischemic/reperfusion (I/R) injury. This study examines the following areas: 1) the temporal induction of the cardio-protection produced by LPS; and 2) the relations between a degree of protection and the myocardial prostacyclin ($PGI_2$) production. Rats were administered LPS (2 mg/kg, i.v.), and hearts were removed 1, 4, 8, 14, 24, 48, 72,and 96 h later. Using Langendorff apparatus, haemodynamic differences during 25 min of global ischemia/30 min reperfusion were investigated. The concentration of $PGI_2$ in aliquots of the coronary effluent was determined by radioimmunoassay as its stable hydrolysis product $6-keto-PGF1_{\alpha}$ and lactate dehydrogenase release were measured as an indicative of cellular injury. LPS-induced cardiac protection against I/R injury appeared 4 h after LPS treatment and remained until 96 h after treatment. $PGI_2$ release increased 2-3 fold at the beginning of reperfusion compared to basal level except in hearts treated with LPS for 48 and 72 h. In hearts removed 48 and 72 h after LPS treatment, basal $PGI_2$ was increased. To determine the enzymatic step in relation to LPS-induced basal $PGI_2$ production, we examined prostaglandin H synthase (PGHS) protein expression, a rate limiting enzyme of prostaglandin production, by using Western blot analysis. LPS increased PGHS protein expression in hearts at 24, 48, 72, 96 h after LPS treatment. Induction of PGHS expression appeared in both isotypes of PGHS, a constitutive PGHS-1 and an inducible PGHS-2. To identify the correlationship between $PGI_2$ production and the cardioprotective effect against I/R injury, indomethacin was administered in vivo or in vitro. Indomethacin did not inhibit LPS-induced cardioprotection, which was not affected by the duration of LPS treatment. Taken together, our results suggest that $PGI_2$ might not be the major endogenous mediator of LPS-induced cardioprotection.

  • PDF

Hydrogen sulfide restores cardioprotective effects of remote ischemic preconditioning in aged rats via HIF-1α/Nrf2 signaling pathway

  • Wang, Haixia;Shi, Xin;Cheng, Longlong;Han, Jie;Mu, Jianjun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.239-249
    • /
    • 2021
  • The present study explored the therapeutic potential of hydrogen sulfide (H2S) in restoring aging-induced loss of cardioprotective effect of remote ischemic preconditioning (RIPC) along with the involvement of signaling pathways. The left hind limb was subjected to four short cycles of ischemia and reperfusion (IR) in young and aged male rats to induce RIPC. The hearts were subjected to IR injury on the Langendorff apparatus after 24 h of RIPC. The measurement of lactate dehydrogenase, creatine kinase and cardiac troponin served to assess the myocardial injury. The levels of H2S, cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), nuclear factor erythroid 2-related factor 2 (Nrf2), and hypoxia-inducible factor (HIF-1α) were also measured. There was a decrease in cardioprotection in RIPC-subjected old rats in comparison to young rats along with a reduction in the myocardial levels of H2S, CBS, CSE, HIF-1α, and nuclear: cytoplasmic Nrf2 ratio. Supplementation with sodium hydrogen sulfide (NaHS, an H2S donor) and l-cysteine (H2S precursor) restored the cardioprotective actions of RIPC in old hearts. It increased the levels of H2S, HIF-1α, and Nrf2 ratio without affecting CBS and CSE. YC-1 (HIF-1α antagonist) abolished the effects of NaHS and l-cysteine in RIPC-subjected old rats by decreasing the Nrf2 ratio and HIF-1α levels, without altering H2S. The late phase of cardioprotection of RIPC involves an increase in the activity of H2S biosynthetic enzymes, which increases the levels of H2S to upregulate HIF-1α and Nrf2. H2S has the potential to restore aging-induced loss of cardioprotective effects of RIPC by upregulating HIF-1α/Nrf2 signaling.