• Title/Summary/Keyword: Lanes

Search Result 572, Processing Time 0.019 seconds

A Link Travel Time Estimation Algorithm Based on Point and Interval Detection Data over the National Highway Section (일반국도의 지점 및 구간검지기 자료의 융합을 통한 통행시간 추정 알고리즘 개발)

  • Kim, Sung-Hyun;Lim, Kang-Won;Lee, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.135-146
    • /
    • 2005
  • Up to now studies on the fusion of travel time from various detectors have been conducted based on the variance raito of the intermittent data mainly collected by GPS or probe vehicles. The fusion model based on the variance ratio of intermittent data is not suitable for the license plate recognition AVIs which can deal with vast amount of data. This study was carried out to develop the fusion model based on travel time acquired from the license plate recognition AVIs and the point detectors. In order to fuse travel time acquired from the point detectors and the license plate recognition AVIs, the optimized fusion model and the proportional fusion model were developed in this study. As a result of verification, the optimized fusion model showed the superior estimation performance. The optimized fusion model is the dynamic fusion ratio estimation model on real time base, which calculates fusion weights based on real time historic data and applies them to the current time period. The results of this study are expected to be used effectively for National Highway Traffic Management System to provide traffic information in the future. However, there should be further studies on the Proper distance for the establishment of the AVIs and the license plate matching rate according to the lanes for AVIs to be established.

Determining Ideal Distance between Consecutive Exit Ramps (고속도로 연결로상 연속 분류지점 간의 이격거리 검토)

  • Lee, Seongkwan Mark;Lee, Ki Young;Jang, Jung Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.65-72
    • /
    • 2011
  • When an expressway intersects another expressway, a unique connector needs to be designed between the two consecutive exit ramps. In such a case, it is important to design a connector such that there is enough distance for drivers to find their way safely. A current design manual in Korea prescribes the minimum length of the connector as 240 m. In this research, we have suggested a method for calculating the minimum length of a connector in order to check the feasibility of the currently prescribed length. For this purpose, we have attempted to determine the total perception-reaction time and lane-changing time required by a driver. For determining the driver's perception-reaction time, we have used the driver's decision time in addition to the conventional 2.5 s of perception-reaction time for stopping sight distances. We have considered both the design speed and the average travel speed for the calculation of the length. To evaluate the accuracy of the new method, we have chosen four sites on expressways for which relatively high accident rates were recorded. As a result, we could verify that the current limit (240 m) was sufficient for drivers to be able to change lanes in the given specific geometry. However, the prescribed limit should be revised in case the drivers' decision time is considered to be their perception-reaction time. All new approaches for calculating the ideal length of a connector have been carried out by taking into account the design speed as well as the average travel speed. Owing to the characteristics of the specific geometry for two consecutive exit ramps and the large difference between the design speed and the average travel speed in the objective areas, it is more realistic to use the proposed method by keeping the decision time equal to a driver's perception-reaction time, in order to determine the ideal distance that should be maintained between two consecutive exit ramps.

The Effect Analysis of NEV(Neighborhood Electric Vehicle) Driving - with VISSIM Simulation - (저속형 전기자동차 주행시 시스템 영향분석 - VISSIM 시뮬레이션을 이용하여 -)

  • Yoon, Tae-Kwan;Baik, Nam-Cheol;Jung, In-Taek
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • To share the lanes with conventional vehicles, traffic operation strategy is needed for NEV (Neighborhood Electric Vehicle). Because NEV cannot accelerate sharply as fast as common car include gasoline, diesel and LPG cars, they may interrupt traffic conditions and make traffic delay. After green lights turn on, all vehicles run through the street including NEV, but NEV have a maximum speed which is 50km/h. It can be an obstacle for following vehicles and will make traffic delay of the intersection. In this reason, we need to organize traffic systems like queue jump with priority traffic signal. To analyze the necessity for NEV road operations, we simulate three scenarios in congested and non-congested conditions. First is that we examine the condition which is mixed NEV and cars on the road, the second one is that we set up lane only NEV can accepted in simulation and last one is making queue jump lane and providing priority signal for NEV. In conclusion, we can conclude that making lane only for NEV is effective to improve travel speed when rate of NEVs is over 20%. Also queue jump lane and priority signal cannot make good effect to intersection delay and average speed.

Selection of Routes for Reflecting Driver's Characteristics by Adopting Multi-Attribute Utility Theory (MAUT) (다속성 효용이론을 적용한 운전자 특성별 경로 선택 연구)

  • Oh, Ji-Eun;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.25-35
    • /
    • 2011
  • Traffic volume increases due to diversification of industry. Also, Automobile ownerships also increase steadily. It is estimated that the registered number of vehicle is expected to be 20 milion in the year 2015. These trends may result in increasing the number of woman drivers and elderly drivers. Therefore, this study aims to identify routes that reflect characteristics of each driver's preferences. A survey was conducted on different routes attributes for variances drivers. Driver types were classified by gender, age, and driving career. Accordingly, a weight for road composition attribute such as number of lanes, number of accidents, slope was estimated by using Swing Weighting technique in Multi-Attribute Utility Theory. In addition, a case study was conducted and identified weights were applied to routes. In result, drivers commonly prefer short route when they considered their routes. Also, male drivers prefer speedy and shorter route than that of female drivers. Elderly drivers prefer safe routes that represent low accidents rate. Moreover driving career under a year drivers prefer safe and easy routes. Therefore, we may conclude that the necessity of diversified route information is essential in the future car navigation system.

Development of Free Flow Speed Estimation Model by Artificial Neural Networks for Freeway Basic Sections (인공신경망을 이용한 고속도로 기본구간 자유속도 추정모형개발)

  • Kang, Jin-Gu;Chang, Myung-Soon;Kim, Jin-Tae;Kim, Eung-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.109-125
    • /
    • 2004
  • In recent decades, microscopic simulation models have become powerful tools to analyze traffic flow on highways and to assist the investigation of level of service. The existing microscopic simulation models simulate an individual vehicle's speed based on a constant free-flow speed dominantly specified by users and driver's behavior models reflecting vehicle interactions, such as car following and lane changing. They set a single free-flow speed for a single vehicle on a given link and neglect to consider the effects of highway design elements to it in their internal simulation. Due to this, the existing models are limitted to provide with identical simulation results on both curved and tangent sections of highways. This paper presents a model developed to estimate the change of free-flow speeds based on highway design elements. Nine neural network models were trained based on the field data collected from seven different freeway curve sections and three different locations at each section to capture the percent changes of free-flow speeds: 100 m upstream of the point of curve (PC) and the middle of the curve. The model employing seven highway design elements as its input variables was selected as the best : radius of curve, length of curve, superelevation, the number of lanes, grade variations, and the approaching free-flow speed on 100 m upstream of PC. Tests showed that the free-flow speeds estimated by the proposed model were statistically identical to the ones from the field at 95% confidence level at each three different locations described above. The root mean square errors at the starting and the middle of curve section were 6.68 and 10.06, and the R-squares at these points were 0.77 and 0.65, respectively. It was concluded from the study that the proposed model would be one of the potential tools introducing the effects of highway design elements to free-flow speeds in simulation.

Development of Freeway Traffic Incident Clearance Time Prediction Model by Accident Level (사고등급별 고속도로 교통사고 처리시간 예측모형 개발)

  • LEE, Soong-bong;HAN, Dong Hee;LEE, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.497-507
    • /
    • 2015
  • Nonrecurrent congestion of freeway was primarily caused by incident. The main cause of incident was known as a traffic accident. Therefore, accurate prediction of traffic incident clearance time is very important in accident management. Traffic accident data on freeway during year 2008 to year 2014 period were analyzed for this study. KNN(K-Nearest Neighbor) algorithm was hired for developing incident clearance time prediction model with the historical traffic accident data. Analysis result of accident data explains the level of accident significantly affect on the incident clearance time. For this reason, incident clearance time was categorized by accident level. Data were sorted by classification of traffic volume, number of lanes and time periods to consider traffic conditions and roadway geometry. Factors affecting incident clearance time were analyzed from the extracted data for identifying similar types of accident. Lastly, weight of detail factors was calculated in order to measure distance metric. Weight was calculated with applying standard method of normal distribution, then incident clearance time was predicted. Prediction result of model showed a lower prediction error(MAPE) than models of previous studies. The improve model developed in this study is expected to contribute to the efficient highway operation management when incident occurs.

Models for Determining the Vehicle and Pedestrian Volumes for the installation of Pedestrian Pushbuttons (보행자 작동신호기 설치기준 정립을 위한 적정 차량 및 보행자 교통량 추정모형)

  • YOON, Seung Sup;YANG, Jae Ho;KIM, Nam Seok
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.488-496
    • /
    • 2015
  • The main reason to install pedestrian pushbuttons is improving traffic operations. The current guideline for the installation of signal systems with pedestrian pushbuttons is car-oriented. It is difficult to clearly understand the guideline because there isn't an in-depth study to compare the pros and cons of the pedestrian- and vehicle-oriented methods in terms of waiting time. Thus, this study aims to estimate the waiting times of pedestrians and vehicles. The two delay times are compared considering the hypothetical circumstances such as geometry, pedestrian crossing time, pedestrian/vehicle counts and arrival distribution. The results show that when the pedestrian traffic volume exceeds 97 ped/h in the case of a two-lane road (one lane in each direction) the pushbutton system is effective and beneficial to pedestrians. It means that the total waiting time of pedestrians is less than the one of vehicles. Additional four scenarios are designed and tested by varying the number of lanes and design speeds. In conclusion, the pushbutton signal is more beneficial for pedestrians when the number of pedestrians is less than or equal to 85, 70, and 70 ped/h for the three-lane scenario, the four-lane with the design speed of 80km/h scenario, and the four-lane with the design speed of 100km/h, respectively.

Safety Improvement of Installation of "Hi-pass" System at Expressway Toll Gate (교통상충기법을 이용한 고속도로 하이패스차로 안전성 개선에 관한 연구 (서울외곽순환고속도로 본선영업소를 중심으로))

  • Yu, Bong-Seok;Lee, Su-Beom;Park, Wan-Yong;Park, Jun-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.7-18
    • /
    • 2010
  • This study analyzed the relative vehicle speed and vehicle deceleration time caused by traffic conflicts using vehicle speed data at expressway toll gates and traffic conflict occurrence data. According to the analysis, the greater the relative vehicle speed is at the toll gate, the more sudden vehicle deceleration occurs due to traffic conflicts. In particular, a comparison study of cases in similar operating conditions presents a finding that usage of lanes influences traffic conflict occurrences as well as relative vehicle speed. With this finding, the study further conducted a quantitative analysis of the accident rates in relation to the relative vehicle speed between vehicles using a "Hi-Pass" lane and a regular lane at the toll gate. It indicates that when the relative vehicle speed is greater, the accident rate is higher due to sudden vehicle deceleration and shorter deceleration time. Furthermore, when the expressway entrance/exit point is closely located to a toll gate and the relative vehicle speed is great, a analysis at a traffic conflict shows a low value.

A Study on the Road Traffic Noise Restriction Factors that Affect the Price of Apartment Complexes (아파트 가격에 영향을 미치는 도로교통소음 제한인자에 관한 연구)

  • Park, Sang-Ill;Choi, Hyung-Il;Cheong, Kyung-Hoon;Jung, Sang-Chul
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.389-400
    • /
    • 2009
  • In this research, we measured the number of lanes, distance, disposition of apartment that are affecting the road traffic noise to evaluate the current condition of G city's road traffic noise. We decide on a basis regarding an apartment price formation factor, and the apartment current price and the results that compared. To have a point scale, we set the maximum road traffic noise at a 8 lane road for 5 points, give 4 points for a 6 lane road, which has a $2.1{\sim}2.5\;dB(A)$ difference compared to a 8 lane road, give 3 points for a 4 lane road, which has a $5.2{\sim}5.5\;dB(A)$ difference compared to a 8 lane road, and set 2 points for a 2 lane road and lower. If we set the standard floor plan as horizontal and a living room facing the roadside, the horizontal and living room facing the opposite side of the road is 1 point because it differs by 14.1 dB(A), and the vertical is 3 points since the difference is 5.3 dB(A). If we make grades by the distance, making standard the fifth floor with little soundproof effect from apartment to road, we observe a measurement below 2.9 dB(A) at a distance of less than 10 m and 5 dB(A), decreased at a distance of 20 m. Therefore, 4 points were given for less than 10m, 3 points for $10{\sim}20\;m$, 2 points for more than 20 m as we can apply the effect of a decay distance of line sound source and the decrease in noise effects of more than 6 dB(A), 1 point for more than 40m, and 0 points for more that 80 m since it is negligible. 28 apartments got 0 points because there is no effect of road traffic noise from other apartments, and 50 apartments where only the road at one side effect them got $5{\sim}10$ points. 4 apartments (17-2, 6-3, 10-4, 3-3) received over 20 points. 15 cases showed a difference between developer price and resale price, and 11 cases (73%) among them showed the same trend (price increases with a low road traffic noise restriction factor point) with the point of road traffic noise restriction factor. 4 cases demonstrated the opposite trend, showing price increases with a high restriction factor point. Among the 4 cases, case numbers 2,6 and 9 appear to be more affected by the location factor (business district) than the road traffic noise restriction factor, and case number 1 appears to be affected by the building factor (openness and direction).

Development of Speed Limits Estimation Model and Analysis of Effects in Urban Roads (도시부도로 제한속도 산정모형 개발 및 효과분석 연구)

  • Kang, Soon Yang;Lee, Soo Beom;Lim, Joon Beom
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.132-146
    • /
    • 2017
  • Appropriate speed limits at a reasonable level in urban roads are highly important factors for efficient and safe movement. Thus, it is greatly necessary to develop the objective models or methodology based on engineering study considering factors such as traffic accident rates, roadside development levels, and roadway geometry characteristics etc. The purpose of this study is to develop the estimate model of appropriate speed limits at each road sections in urban roads using traffic information big data and field specific data and to review the effects of accident decrease. In this study, the estimate method of appropriate speed limits in directional two or more lanes of urban roads is reflecting features of actual variables in a form of adjustment factor on the basis of the maximum statutory speed limits. As a result of investigating and testing influential variables, the main variables to affect the operating speed are the function of road, the existence of median, the width of lane, the number of traffic entrance/exit path and the number of traffic signal or nonsignal at intersection and crosswalk. As a result of testing this model, when the differences are bigger between the real operating speed and the recommended speed limits using model developed in this study, the accident rate generally turns out to be higher. In case of using the model proposed in this study, it means accident rate can be lower. When the result of this study is applied, the speed limits of directional two or more lane roads in Seoul appears about 11km/h lower than the current speed limits. The decrease of average operating speed caused by the decrease of speed limits is 2.8km/h, and the decrease effect of whole accidents according to the decrease of speed is 18% at research road. In case that accident severity is considered, the accident decrease effects are expected to 17~24% in fatalities, 11~17% in seriously injured road user, 6~9% in slightly injured road user, 5~6% in property damage only accidents.