• 제목/요약/키워드: Lanenet

검색결과 1건 처리시간 0.014초

딥러닝 알고리즘 기반 교통법규 위반 공익신고 영상 분석 시스템 (Analysis System for Public Interest Report Video of Traffic Law Violation based on Deep Learning Algorithms)

  • 최민성;문미경
    • 한국전자통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.63-70
    • /
    • 2023
  • 고화질 블랙박스의 확산과 '스마트 국민제보', '안전신문고' 등 모바일 애플리케이션의 도입에 따른 영향으로 교통법규 위반 공익신고가 급증하였으며, 이로 인해 이를 처리할 담당 경찰 인력은 부족한 상황이 되었다. 본 논문에서는 교통법규 위반 공익신고 영상 중, 가장 많은 비중을 차지하는 차선위반에 대해 딥러닝 알고리즘을 활용하여 자동 검출할 수 있는 시스템의 개발내용에 관해 기술한다. 본 연구에서는 YOLO 모델과 Lanenet 모델을 사용하여 차량과 실선 객체를 인식하고 deep sort 알고리즘을 사용하여 객체를 개별로 추적하는 방법, 그리고 차량 객체의 바운딩 박스와 실선 객체의 범위가 겹치는 부분을 인식하여 진로변경 위반을 검출하는 방법을 제안한다. 본 시스템을 통해 신고된 영상에 대해 교통법규 위반 여부를 자동 분석해줌으로써 담당 경찰 인력 부족난을 해소할 수 있을 것으로 기대한다.