• Title/Summary/Keyword: Lane sensing

Search Result 21, Processing Time 0.031 seconds

Intelligent Driver Assistance Systems based on All-Around Sensing (전방향 환경인식에 기반한 지능형 운전자 보조 시스템)

  • Kim Sam-Yong;Kang Geong-Kwan;Ryu Young-Woo;Oh Se-Young;Kim Kwang-Soo;Park Sang-Cheol;Kim Jin-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.49-59
    • /
    • 2006
  • DAS(Driver Assistance Systems) support the driver's decision making to increase safety and comfort by issuing the naming signals or even exert the active control in case of dangerous conditions. Most previous research and products intend to offer only a single warning service like the lane departure warning, collision warning, lane change assistance, etc. Although these functions elevate the driving safety and convenience to a certain degree, New type of DAS will be developed to integrate all the important functions with an efficient HMI (Human-Machine Interface) framework for various driving conditions. We propose an all-around sensing based on the integrated DAS that can also remove the blind spots using 2 cameras and 8 sonars, recognize the driving environment by lane and vehicle detection, construct a novel birds-eye HMI for easy comprehension. it can give proper warning in case of imminent danger.

Development of Density Measurement Technique Based on Two Point Detectors and Measurement Reliability According to Different Sensing Gaps (두 지점의 지점검지기를 이용한 밀도측정방안 개발 및 측정간격에 따른 신뢰성 분석)

  • Lee, Cheong-Won;Kim, Min-Seong;Park, Jae-Yeong;Lee, Eun-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.157-167
    • /
    • 2010
  • Density is the most important congestion indicator among the three fundamental flow variables, flow, speed and density. Measuring density in the field has two different ways, direct and indirect. Taking photos with wide views is one of direct ways, which is not widely used because of its cost and lacking of proper positions. Another direct density measuring method using two point detectors has been introduced with the concept of instantaneous density, average density and measurement interval. The relationship between accuracy and measurement interval has been investigated using the SIMULATION data produced by Paramics Application Programming Interface function. We analyze the affect of segment density accuracy by sensing gap each road condition such as sensing segment length, lane and LOS after gathering data by Paramics Application Programming Interface.

Modeling & Dynamic Analysis for Four Wheel Steering Vehicles (4WS 차량의 모델링 및 동적 해석)

  • Jang, J.H.;Jeong, W.S.;Han, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

REPRESENTATION OF NAVIGATION INFORMATION FOR VISUAL CAR NAVIGATION SYSTEM

  • Joo, In-Hak;Lee, Seung-Yong;Cho, Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.508-511
    • /
    • 2007
  • Car navigation system is one of the most important applications in telematics. A newest trend of car navigation system is using real video captured by camera equipped on the vehicle, because video can overcome the semantic gap between map and real world. In this paper, we suggest a visual car navigation system that visually represents navigation information or route guidance. It can improve drivers' understanding about real world by capturing real-time video and displaying navigation information overlaid on it. Main services of the visual car navigation system are graphical turn guidance and lane change guidance. We suggest the system architecture that implements the services by integrating conventional route finding and guidance, computer vision functions, and augmented reality display functions. What we designed as a core part of the system is visual navigation controller, which controls other modules and dynamically determines visual representation methods of navigation information according to a determination rule based on current location and driving circumstances. We briefly show the implementation of system.

  • PDF

Local Path Planning Method based on Autonomy Manager for Autonomous Navigation in Urban Environment (도심환경 자율주행을 위한 자율매니저 기반 경로계획 기법)

  • Lee, Young-Il;Ahn, Seong-Yong;Kim, Chong-Hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.719-725
    • /
    • 2013
  • In this paper, we propose a local path planning method based on RANGER algorithm and autonomy manager for autonomous navigation of UGV in urban environment. LPP method is designed to generate the local path in sensing area by using lane and curb of pavement and autonomy manager is designed to make a decision which transit the status of LPP component to a proper status for current navigation environment. A field test is conducted with scenarios in real urban environment in which crossroad, crosswalk and pavement are included and the performance of proposed method is validated.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Sediment Fluxes in Shelf Seas Modelling and Monitoring

  • Prandel, David
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.144-153
    • /
    • 2002
  • This is a review paper, assessing progress reported in a Special Issue (Prandle and Lane, 2000) of Coastal Engineering focusing on simulation of SPM in the North Sea, against issues over a diverse range of shelf seas and their coastal margins. The broad objectives of reproducing the characteristics of sediment fluxes off an open coast and relating these to tidal and wave forcing were achieved. However, accurate computation of these fluxes remains sensitive to largely empirical coefficients used in determining erosion and deposition rates. Bed roughness strongly influences both these coefficients and the associated near-bed current magnitudes (including wave impact thereon). Bed roughness can change significantly over a tidal cycle and dramatically over seasons or in the course of a major event. Accurate simulation of sediment fluxes on a day-to-day basis is constrained by dependency on the initial distribution of mobile sediments. The latter depends on rates and locations of original sources and the time history of preceding events. Remote sensing via aircraft could provide data for assimilation into such models to circumvent these constraints. The approaches described here can be readily applied to other coastal regions to indicate the likely distributions and pathways of known sediment sources. However quantitative simulations will require an associated observational programme. A subsequent stage is to understand the evolving balance between the forecasted sediment movement - the resulting morphological adjustments and thence modifications to the prevailing tidal current and wave regimes.

Efficient Route Determination Technique in LBS System

  • Kim, Sung-Soo;Kim, Kwang-Soo;Kim, Jae-Chul;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.843-845
    • /
    • 2003
  • Shortest Path Problems are among the most studied network flow optimization problems, with interesting applications in various fields. One such field is the route determination service, where various kinds of shortest path problems need to be solved in location-based service. Our research aim is to propose a route technique in real-time locationbased service (LBS) environments according to user’s route preferences such as shortest, fastest, easiest and so on. Turn costs modeling and computation are important procedures in route planning. There are major two kinds of cost parameters in route planning. One is static cost parameter which can be pre-computed such as distance and number of traffic-lane. The other is dynamic cost parameter which can be computed in run-time such as number of turns and risk of congestion. In this paper, we propose a new cost modeling method for turn costs which are traditionally attached to edges in a graph. Our proposed route determination technique also has an advantage that can provide service interoperability by implementing XML web service for the OpenLS route determination service specification. In addition to, describing the details of our shortest path algorithms, we present a location-based service system by using proposed routing algorithms.

  • PDF

Velocity and Distance Estimation-based Sensing Data Collection Interval Control Technique for Vehicle Data-Processing Overhead Reduction (차량의 데이터 처리 오버헤드를 줄이기 위한 이동 속도와 거리 추정 기반의 센싱 데이터 수집 주기 제어 기법)

  • Kwon, Jisu;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1697-1703
    • /
    • 2020
  • Sensor nodes that directly collect data from the surrounding environment have many constraints, such as power supply and memory size, thus efficient use of resources is required. In this paper, in a sensor node that receives location data of a vehicle on a lane, the data reception period is changed by the target's speed estimated by the Kalman filter and distance weight. For a slower speed of the vehicle, the longer data reception interval of the sensor node can reduce the processing time performed in the entire sensor network. The proposed method was verified through a traffic simulator implemented as MATLAB, and the results achieved that the processing time was reduced in the entire sensor network using the proposed method compared to the baseline method that receives all data from the vehicle.

Analyzing Characteristics of Forest Damage within the Geum-buk Mountain Range (금북정맥의 산림훼손 특성 분석)

  • Jang, Gab-Sue;Jeon, Seong-Woo;Kim, Sang-Soo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.5
    • /
    • pp.55-63
    • /
    • 2008
  • The characteristics of forest damage in the Geum-buk Mountains were analyzed by using satellite images and a field survey for landscape conservation purposes. A survey scope was fixed using DEM, and areas of damage in the mountain range were analyzed via ArcMap v. 9.2 using SPOT 5 images, a high resolution satellite image. All damaged areas were reviewed and corrected in a field survey. As a result, 75 roads were found to completely fragment forest patches. Of those roads, 26 have the width under 3m, which means that the fragmentation of the forest by these roads may have a minor effect on forest habitat and its ecosystems, while other roads such as two-lane roads may have broader detrimental influences on the ecosystem. Two thousand eighty-three sections of accounted for a total area of about 5,760.7ha. Orchard areas including chestnut tree plantations were ranked as the largest in the damaged area within the Geum-buk Mountains, followed by public facility areas and grassland areas. This means that man-made land usage has progressed in the area regardless of slope and elevation.