• Title/Summary/Keyword: Lane estimation

Search Result 130, Processing Time 0.018 seconds

Real-Time Dynamic Simulation of Vehicle and Occupant Using a Neural Network (시뮬레이터에서 동역학 실시간 처리를 위한 신경망 적용)

  • Son, Kwon;Choi, Kyung-Hyun;Song, Nam-Yong;Lee, Dong-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.132-140
    • /
    • 2002
  • A momentum backpropagation neural network is prepared to carry out real-time dynamics simulations of a passenger car. A full-car model of fifteen degrees of freedom was constructed for vehicle dynamics analysis. Human body dynamics analysis was performed for a male driver(50 percentile Korean adult) restrained by a three point seatbelt system. The trained data using the neural network were obtained using a dynamic solver, ADAMS . The neural network were formed based on the dynamics of the simulator. The optimized hidden layer was obtained by selecting the optimal number of hidden layers. The driving scenario including bump passing and lane changing has been used for the estimation of the proposed neural network. A comparison between the trained data and neural network outputs is found to be satisfactory to show the applicability of the suggested approach.

Multi-Vehicle Tracking Adaptive Cruise Control (다차량 추종 적응순항제어)

  • Moon Il ki;Yi Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

The Evaluation on the Type of Support Element by Field Test Data in 4-lane Wide Road Tunnel (4차로 광폭터널의 계측결과를 이용한 암반등급에 따른 지보수준 평가)

  • Do, Jongnam;Kim, Yeonjoong;Lee, Chanbok;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • Field measurement is a very essential factor for economic aspect and estimation of stability of tunnels. In this paper, various types of support element based on field test data in 4-lane wide road tunnel were evaluated. And stability and economical efficiency were also estimated. The estimated value were compared with design value and the type of support element which is applicable to site condition was evaluated. The results show that most of support elements were modified under the standard value(30mm) and type of support element which is already constructed was overestimated. So, appropriate level of support element have to be presented to save the time and cost during construction.

A Study on U-Turn Location and Length Estimation at Signalized Intersection (신호교차로에서 U-Turn허용구간의 위치 및 적정길이 산정에 관한 연구)

  • Lee, Jung-Hwan;Park, Je-Jin;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.203-213
    • /
    • 2008
  • U-Turn offers convenience to drivers. U-Turn increases efficiency of traffic flow. But Standard of U-Turn is not clear. It caused many problems of traffic flow and traffic safety. This study estimate length between U-Turn location with front intersection based on stopping sight distance and left-turn vehicle's queue length. Variables are used traffic volume and operation speed. This study Analysis of U-Turn vehicle's behaviors and classification of conflict form by investigation. U-Turn length estimating based on relationship analysis between conflict with U-Turn length. Variables are used lane changing angles and operation speed. This study estimates length between U-Turn location with back intersection based on gap acceptance theory. Variables are used traffic volume, operation speed and lane changing angles. So, U-Turn location and length estimated considering traffic flow and traffic safety.

Simultaneous Equation Models for Evaluating Roundabout Accidents According to Different Driving Types (연립방정식을 이용한 운전유형별 회전교차로 사고모형)

  • Kim, Kyung Hwan;Park, Byung Ho
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.5
    • /
    • pp.3-10
    • /
    • 2012
  • This study dealt with traffic accidents occurring within roundabouts. The objective was to develop roundabout accident models for different driving types by using simultaneous equations. In pursuing the above, this study used a statistical program SPSS 17.0 to accommodate data from 148 accidents occurred within 39 roundabouts of Korea. In addition, the 2SLS(2 stage least square) estimation method was adopted to calibrate the models. The main results are as follows. First, both the number of accidents and the EPDO were evaluated to have bilateral relationships. Second, all 6 different simultaneous equation models according to driving types were found to be statistically significant. Third, the developed models were compared to each other with respect to either common or specific variables. Finally, variables such as ADT, conflicting rate, heavy vehicle ratio, circulatory roadway width, number of circulatory roadway lane, approach lane width, average approach lanes, parking places, and bus stops were selected as independent variables for the models.

Modified Approaches to Delay Estimation for the Work Zones in the Proximity of the Signalized Intersections (공사구간이 있는 신호교차로의 지체산정을 위한 새로운 접근)

  • Shin, Chi-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.269-281
    • /
    • 2018
  • Unlike its archetype predecessor such as the Highway Capacity Manual of the United States, the Korean Highway Capacity Manual of 2013 provides the analytical models for estimating the saturation flow rates for the lane-occupying work-zones in the proximity of the signalized intersections. Direct application of the revised saturation flow rates into the classic control delay models, however, appears to produce unreasonable delay amount as traffic demand approaches lane-group capacities and surpasses them, which is common phenomena in the work-zones. Complex interaction among vehicles, lane-dropping work-zone geometry and signal operations were never accounted in the traditional control delay models, and considerable differences between the delay model outcomes and field observations are repeatedly experienced. This paper proposes the modified approaches to the delay models in the manual, exerted on all three elements of control delay, and particularly focuses on the temporal and spatial boundary expansion in comparing the simulated results to the estimated ones. Extensive microscopic simulation work and calibration effort supports the modified approaches well enough to use them in the work-zone planning and evaluation.

Development of Operating Speed Prediction Models Reflecting Alignment Characteristics of the Upstream Road Sections at Four-Lane Rural Uninterrupted Flow Facility (상류부 선형특성을 반영한 지방부 왕복 4차로 연속류 도로의 주행속도 예측모형 개발)

  • Jo, Won-Beom;Kim, Yong-Seok;Choe, Jae-Seong;Kim, Sang-Yeop;Kim, Jin-Guk
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.5
    • /
    • pp.141-153
    • /
    • 2010
  • The study is about the development of operating speed prediction models aimed for an evaluation of design consistency of four lane rural roads. The main differences of this study relative to previous research are the method of data collection and classification of road alignments. The previous studies collected speed data at several points in the horizontal curve and approaching tangent. This method of collection is based on the assumption that acceleration and deceleration only occurs at horizontal tangents and the speed is kept constant at horizontal curves. However, this assumption leads to an unreliable speed estimation, so drivers' behavior is not well represented. Contrary to the previous approach, speed data were collected with one and data analysis using a speed profile is made for data selection before building final models. A total of six speed prediction models were made according to the combination of horizontal and vertical alignments. The study predicts that the speed data analysis and selection for model building employed in this study can improve the prediction accuracy of models and be useful to analyze drivers' speed behavior in a more detailed way. Furthermore, it is expected that the operating speed prediction models can help complement the current design-speed-based guidelines, so more benefits to drivers as real road users, rather than engineers or decision makers, can be achieved.

Development and Performance Test of Ka-Band Pulsed Doppler Radar System for Road Obstacle Warning (도로 장애물 경보를 위한 Ka-대역 펄스 도플러 레이다 시스템 개발 및 성능시험)

  • Jung, Jung-Soo;Seo, Young-Ho;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2014
  • Abruptly occurred obstacles on highway threaten driving safety. Radar draws the attention to the collision avoidance system because it can be fully operational in all weather, and day and night condition. This paper presents the design, implementation and performance test results of pulsed Doppler radar system for detection and warning of road obstacles. The system is designed to consider highway environment and detection capability about various fixed and moving obstacles. The system consists of 4 subsystems, which include antenna unit, transmitter and receiver unit, radar signal & data processing unit, and controller & display unit. The core technologies include clutter map based change detection for fixed obstacles detection, Doppler estimation for velocity detection of moving targets, and azimuth angle estimation method using monopulse for lane estimation and tracking. The design performance of the developed radar system is verified through experiments using a fixed reference target and moving vehicles in test highway.

Freeway Design Capacity Estimation through the Analysis of Time Headway Distribution (차두시간분포 분석을 통한 고속도로 설계용량 산정모형의 개발)

  • Kim, Jum San;Park, Chang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.251-258
    • /
    • 2006
  • This study is to develop an estimation method of freeway design capacity through the analysis of time headway distribution in continuum flow. Traffic flow-speed diagram and time headway distribution plotted from individual vehicle data shows: a) a road capacity is not deterministic but stochastic, b) time headway distribution for each vehicle speed group follows pearson type V distribution. The freeway design capacity estimation model is developed by determining a minimum time headway for capacity with stochastic method. The estimated capacity values for each design speed are lower when design speed ${\leq}80km/h$, and higher when design speed ${\geq}106km/h$ in comparison with HCM(2000)'s values. In addition, The distinguish difference is that this model leads flexible application in planning level by defining the capacity as stochastic distribution. In detail, this model could prevent a disutility to add a lane for only one excess demand in a road planning level.

Estimation of Hi-pass Traffic Dispersion Rates to Determine The Optimal Location of Hi-pass Lanes at A Toll Plaza (요금소 하이패스 차로 배치 최적화를 위한 하이패스 차량 교통분산율 추정)

  • Lee, Jaesoo;Lee, Ki-Young;Lee, Cheol-Ki;Yun, Ilsoo;Yu, Jeong Whon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.4
    • /
    • pp.22-32
    • /
    • 2013
  • Since the percentage of vehicles equipped with Hi-pass, an electronic toll collecting device, has increased rapidly, it is very crucial to determine the optimal location of Hi-pass lanes at a toll plaza in terms of traffic control and operation. In this study, the appropriateness of existing Hi-pass lanes of a toll plaza is evaluated considering its physical geometry and traffic characteristics. A new evaluating criterion called "traffic dispersion rate" is developed in order to measure the level of traffic spreading across the toll booth lanes at a toll plaza. Logistic regression models are constructed to estimate the relationship between the traffic dispersion rate and its affecting variables. The model estimation results show that several variables including Hi-pass lane traffic volume, length of toll plaza, entering/exiting taper lengths, and locations of Hi-pass lanes. The results also suggest that traffic dispersion rate can be increased by adjusting the location of Hi-pass lanes. The study enables us to quantify traffic dispersion rate which can be used to optimize the location and operation of Hi-pass lanes at toll plazas.