• Title/Summary/Keyword: Lane Method

Search Result 491, Processing Time 0.031 seconds

A Study of Lane Extraction using Sobel Intensity Profile (Sobel Intensity Profile을 이용한 차선 추출에 관한 연구)

  • Park, Tae-Jun;Cho, Jae-Soo;Cho, Tai-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.228-230
    • /
    • 2009
  • Lane extraction is basically required for a driving car to understand its external road environments via a camera. In this paper, a lane extraction method using "Sobel Intensity Profile" is described. The Sobel intensity profile is obtained using only vertical edge components of Sobel edge outputs, and used to yield fitted lines for lanes. The RANAC algorithm is applied to fit lines using only inliers. Experimental results have shown the reliability of the proposed lane extraction method.

  • PDF

Lane Detection Based on Inverse Perspective Transformation and Machine Learning in Lightweight Embedded System (경량화된 임베디드 시스템에서 역 원근 변환 및 머신 러닝 기반 차선 검출)

  • Hong, Sunghoon;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • This paper proposes a novel lane detection algorithm based on inverse perspective transformation and machine learning in lightweight embedded system. The inverse perspective transformation method is presented for obtaining a bird's-eye view of the scene from a perspective image to remove perspective effects. This method requires only the internal and external parameters of the camera without a homography matrix with 8 degrees of freedom (DoF) that maps the points in one image to the corresponding points in the other image. To improve the accuracy and speed of lane detection in complex road environments, machine learning algorithm that has passed the first classifier is used. Before using machine learning, we apply a meaningful first classifier to the lane detection to improve the detection speed. The first classifier is applied in the bird's-eye view image to determine lane regions. A lane region passed the first classifier is detected more accurately through machine learning. The system has been tested through the driving video of the vehicle in embedded system. The experimental results show that the proposed method works well in various road environments and meet the real-time requirements. As a result, its lane detection speed is about 3.85 times faster than edge-based lane detection, and its detection accuracy is better than edge-based lane detection.

Research of the Unmanned Vehicle Control and Modeling for Lane Tracking and Obstacle Avoidance

  • Kim, Sang-Gyum;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.932-937
    • /
    • 2003
  • In this paper, we will explain about the unmanned vehicle control and modeling for combined obstacle avoidance and lane tracking. First, obstacle avoidance is considered as one of the important technologies in the unmanned vehicle. It is consisted by two parts: the first part includes the longitudinal control system for the acceleration and deceleration and the second part is the lateral control system for the steering control. Each system uses to the obstacle avoidance during the vehicle moving. Therefore, we propose the method of vehicle control, modeling and obstacle avoidance. Second, we describe a method of lane tracking by means of vision system. It is important in the unmanned vehicle and mobile robot system. In this paper, we deal with lane tracking and image processing method and it is including lane detection method, image processing algorithm and filtering method.

  • PDF

Advanced Lane Detecting Algorithm for Unmanned Vehicle

  • Moon, Hee-Chang;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1130-1133
    • /
    • 2003
  • The goal of this research is developing advanced lane detecting algorithm for unmanned vehicle. Previous lane detecting method to bring on error become of the lane loss and noise. Therefore, new algorithm developed to get exact information of lane. This algorithm can be used to AGV(Autonomous Guide Vehicle) and LSWS(Lane Departure Warning System), ACC(Adapted Cruise Control). We used 1/10 scale RC car to embody developed algorithm. A CCD camera is installed on top of vehicle. Images are transmitted to a main computer though wireless video transmitter. A main computer finds information of lane in road image. And it calculates control value of vehicle and transmit these to vehicle. This algorithm can detect in input image marked by 256 gray levels to get exact information of lane. To find the driving direction of vehicle, it search line equation by curve fitting of detected pixel. Finally, author used median filtering method to removal of noise and used characteristic part of road image for advanced of processing time.

  • PDF

Real Time Road Lane Detection with RANSAC and HSV Color Transformation

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • Autonomous driving vehicle research demands complex road and lane understanding such as lane departure warning, adaptive cruise control, lane keeping and centering, lane change and turn assist, and driving under complex road conditions. A fast and robust road lane detection subsystem is a basic but important building block for this type of research. In this paper, we propose a method that performs road lane detection from black box input. The proposed system applies Random Sample Consensus to find the best model of road lanes passing through divided regions of the input image under HSV color model. HSV color model is chosen since it explicitly separates chromaticity and luminosity and the narrower hue distribution greatly assists in later segmentation of the frames by limiting color saturation. The implemented method was successful in lane detection on real world on-board testing, exhibiting 86.21% accuracy with 4.3% standard deviation in real time.

Preprocessing Technique for Lane Detection Using Image Clustering and HSV Color Model (영상 클러스터링과 HSV 컬러 모델을 이용한 차선 검출 전처리 기법)

  • Choi, Na-Rae;Choi, Sang-Il
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.144-152
    • /
    • 2017
  • Among the technologies for implementing autonomous vehicles, advanced driver assistance system is a key technology to support driver's safe driving. In the technology using the vision sensor having a high utility, various preprocessing methods are used prior to feature extraction for lane detection. However, in the existing methods, the unnecessary lane candidates such as cars, lawns, and road separator in the road area are false positive. In addition, there are cases where the lane candidate itself can not be extracted in the area under the overpass, the lane within the dark shadow, the center lane of yellow, and weak lane. In this paper, we propose an efficient preprocessing method using k-means clustering for image division and the HSV color model. When the proposed preprocessing method is applied, the true positive region is maximally maintained during the lane detection and many false positive regions are removed.

Vision Sensing for the Ego-Lane Detection of a Vehicle (자동차의 자기 주행차선 검출을 위한 시각 센싱)

  • Kim, Dong-Uk;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.137-141
    • /
    • 2018
  • Detecting the ego-lane of a vehicle (the lane on which the vehicle is currently running) is one of the basic techniques for a smart car. Vision sensing is a widely-used method for the ego-lane detection. Existing studies usually find road lane lines by detecting edge pixels in the image from a vehicle camera, and then connecting the edge pixels using Hough Transform. However, this approach takes rather long processing time, and too many straight lines are often detected resulting in false detections in various road conditions. In this paper, we find the lane lines by scanning only a limited number of horizontal lines within a small image region of interest. The horizontal image line scan replaces the edge detection process of existing methods. Automatic thresholding and spatiotemporal filtering procedures are also proposed in order to make our method reliable. In the experiments using real road images of different conditions, the proposed method resulted in high success rate.

Feasibility Evaluation of Lane Grouping Methods for Signalized Intersection Performance Index Analysis in KHCM (도로용량편람 신호교차로 성능지표 분석을 위한 차로군 분류의 적정성 평가)

  • Kim, Sang-Gu;Yun, Ilsoo;Oh, Young-Tae;Ahn, Hyun-Kyung;Kwon, Ken-An;Hong, Doo-Pyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.109-126
    • /
    • 2014
  • The level of service (LOS) of the Highway Capacity Manual (KHCM) has been used as a basic criterion at decision making processes for signalized intersections in Korea. The KHCM provides five steps for the signalized intersection analysis. Among them, lane grouping, which is the third step, significantly influence the final LOS. The current method presented in the KHCM, however, classifies a shared lane as a de facto turning lane group, even though the turning traffic of the shared lane is few. Thus, this research was initiated to provide an alternative. To this end, three alternatives were suggested, including the method based on the lane grouping presented in the U.S. Highway Capacity Manual, the method using turning ratio of shared turning lane, and the method using a threshold traffic volume in lane grouping. The feasibilities of the three methods were evaluated using a calibrated CORSIM model. Conclusively, the method using a threshold traffic volume in lane grouping outperformed.

Lane Detection Based on Inverse Perspective Transformation and Kalman Filter

  • Huang, Yingping;Li, Yangwei;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.643-661
    • /
    • 2018
  • This paper proposes a novel algorithm for lane detection based on inverse perspective transformation and Kalman filter. A simple inverse perspective transformation method is presented to remove perspective effects and generate a top-view image. This method does not need to obtain the internal and external parameters of the camera. The Gaussian kernel function is used to convolute the image to highlight the lane lines, and then an iterative threshold method is used to segment the image. A searching method is applied in the top-view image obtained from the inverse perspective transformation to determine the lane points and their positions. Combining with feature voting mechanism, the detected lane points are fitted as a straight line. Kalman filter is then applied to optimize and track the lane lines and improve the detection robustness. The experimental results show that the proposed method works well in various road conditions and meet the real-time requirements.

Robust Lane Detection Method in Varying Road Conditions (도로 환경 변화에 강인한 차선 검출 방법)

  • Kim, Byeoung-Su;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.88-93
    • /
    • 2012
  • Lane detection methods using camera, which are part of the driver assistance system, have been developed due to the growth of the vehicle technologies. However, lane detection methods are often failed by varying road conditions such as rainy weather and degraded lanes. This paper proposes a method for lane detection which is robust in varying road condition. Lane candidates are extracted by intensity comparison and lane detection filter. Hough transform is applied to compute the lane pair using lane candidates which is straight line in image. Then, a curved lane is calculated by using B-Snake algorithm. Also, weighting value is computed using previous lane detection result to detect the lanes even in varying road conditions such as degraded/missed lanes. Experimental results proved that the proposed method can detect the lane even in challenging road conditions because of weighting process.