• Title/Summary/Keyword: Lane Extraction

Search Result 59, Processing Time 0.065 seconds

A Study of Lane Extraction using Sobel Intensity Profile (Sobel Intensity Profile을 이용한 차선 추출에 관한 연구)

  • Park, Tae-Jun;Cho, Jae-Soo;Cho, Tai-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.228-230
    • /
    • 2009
  • Lane extraction is basically required for a driving car to understand its external road environments via a camera. In this paper, a lane extraction method using "Sobel Intensity Profile" is described. The Sobel intensity profile is obtained using only vertical edge components of Sobel edge outputs, and used to yield fitted lines for lanes. The RANAC algorithm is applied to fit lines using only inliers. Experimental results have shown the reliability of the proposed lane extraction method.

  • PDF

Lane Recognition Using Lane Prominence Algorithm for Unmanned Vehicles (무인차량 적용을 위한 차선강조기법 기반의 차선 인식)

  • Baek, Jun-Young;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.625-631
    • /
    • 2010
  • This paper proposes lane recognition algorithm using lane prominence technique to extract lane candidate. The lane prominence technique is combined with embossing effect, lane thickness check, and lane extraction using mask. The proposed lane recognition algorithm consists of preprocessing, lane candidate extraction and lane recognition. First, preprocessing is executed, which includes gray image acquisition, inverse perspective transform and gaussian blur. Second, lane candidate is extracted by using lane prominence technique. Finally, lane is recognized by using hough transform and least square method. To evaluate the proposed lane recognition algorithm, this algorithm was applied to the detection of lanes in the rainy and night day. The experiment results showed that the proposed algorithm can recognize lane in various environment. It means that the algorithm can be applied to lane recognition to drive unmanned vehicles.

Lane Departure Warning Algorithm Through Single Lane Extraction and Center Point Analysis (단일차선추출 및 중심점 분석을 통한 차선이탈검출 알고리즘)

  • Bae, Jung-Ho;Kim, Soo-Woong;Lee, Hae-Yeoun;Lee, Hyun-Ah;Kim, Byeong-Man
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.35-46
    • /
    • 2009
  • Lane extraction and lane departure warning algorithms using the image sensor attached in the vehicle are addressed. With the research about intelligent automobile, there have been many algorithms about lane recognition and lane departure warning system. However, since these algorithms require to detect 2 lanes, the high time complexity and the low recognition rate under various driving circumstances are critical problems. In this paper, we present a lane departure warning algorithm using single lane extraction and center point analysis that achieves the fast processing time and high detection rate. From the geometry between camera and objects, the region of interest (ROI) is determined and splitted into two parts. Hough transform detects the part of the lane. After the detected lane is restored to have a pre-determined size, lane departure is estimated by calculating the distance from the center point. On real driving environments, the presented algorithm is compared with previous algorithms. Experiment results support that the presented algorithm is fast and accurate.

A Road Lane Detection Algorithm using HSI Color Information and ROI-LB (HSI 색정보와 관심영역(ROI-LB)을 이용한 차선검출 알고리듬)

  • Choi, In-Suk;Cheong, Cha-Keon
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.222-224
    • /
    • 2009
  • This paper presents an algorithm that extracts road lane's specific information by using HSI color information and performance enhancement of lane detection base on vision processing of drive assist. As a preprocessing for high speed lane detection, the optimal extraction of region of interest for lane boundary(ROI-LB) can be processed to reduction of detection region in which high speed processing is enabled and it also increases reliabilities by deleting edges those are misrecognized. Road lane is extracted with simultaneous processing of noise reduction and edge enhancement using the Laplacian filter, the reliability of feature extraction can be increased for various road lane patterns. Since noise can be removed by using saturation and brightness of HSI color model. Also it searches for the road lane's color information and extracts characteristics. The real road experimental results are presented to evaluate the effectiveness of the proposed method.

  • PDF

A study on the proceeding direction and obstacle detection by line edge extraction (직선 Edge 추출에 의한 주행방향 및 장애물 검출에 관한 연구)

  • 정준익;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.97-100
    • /
    • 1996
  • In this paper, we describe an algorithm which estimate road following direction using the vanishing point property and obstacle detection. This method of detecting the lane markers in a set of continuous lane highway images using linear approximation is presented. This algorithm is designed for accurate and robust extraction of this data as well as high processing speed. Also, this algorithm reckon distance and chase about an obstacle. It include four algorithms which are lane prediction, lane extraction, road following parameter estimation and obstacle detection algorithm. High accuracy was proven by quantitative evaluation using simulated images. Both robustness and the practicality of real time video rate processing were then confirmed through experiment using VTR real road images.

  • PDF

Study on Effective Lane Detection Using Hough Transform and Lane Model (허프변환과 차선모델을 이용한 효과적인 차선검출에 관한 연구)

  • Kim, Gi-Seok;Lee, Jin-Wook;Cho, Jae-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.34-36
    • /
    • 2009
  • This paper proposes an effective lane detection algorithm using hugh transform and lane model. The proposed lane detection algorithm includes two major components, i.e., lane marks segmentation and an exact lane extraction using a novel postprocessing technique. The first step is to segment lane marks from background images using HSV color model. Then, a novel postprocessing is used to detect an exact lane using Hugh transform and lane models(linear and curved lane models). The postprocessing consists of three parts, i.e, thinning process, Hugh Transform and filtering process. We divide input image into three regions of interests(ROIs). Based on lane curve function(LCF), we can detect an exact lane from various extracted lane lines. The lane models(linear and curved lane mode]) are used in order to judge whether each lane segment is fit or not in each ROIs. Experimental results show that the proposed scheme is very effective in lane detection.

  • PDF

EXTRACTION OF LANE-RELATED INFORMATION AND A REAL-TIME IMAGE PROCESSING ONBOARD SYSTEM

  • YI U. K.;LEE W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.171-181
    • /
    • 2005
  • The purpose of this paper is two-fold: 1) A novel algorithm in order to extract lane-related information from road images is presented; 2) Design specifications of an image processing onboard unit capable of extracting lane­related information in real-time is also presented. Obtaining precise information from road images requires many features due to the effects of noise that eventually leads to long processing time. By exploiting a FPGA and DSP, we solve the problem of real-time processing. Due to the fact that image processing of road images relies largely on edge features, the FPGA is adopted in the hardware design. The schematic configuration of the FPGA is optimized in order to perform 3 $\times$ 3 Sobel edge extraction. The DSP carries out high-level image processing of recognition, decision, estimation, etc. The proposed algorithm uses edge features to define an Edge Distribution Function (EDF), which is a histogram of edge magnitude with respect to the edge orientation angle. The EDF enables the edge-related information and lane-related to be connected. The performance of the proposed system is verified through the extraction of lane-related information. The experimental results show the robustness of the proposed algorithm and a processing speed of more than 25 frames per second, which is considered quite successful.

A High Speed Road Lane Detection based on Optimal Extraction of ROI-LB (관심영역(ROI-LB)의 최적 추출에 의한 차선검출의 고속화)

  • Cheong, Cha-Keon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.253-264
    • /
    • 2009
  • This paper presents an algorithm, aims at practical applications, for the high speed processing and performance enhancement of lane detection base on vision processing system. As a preprocessing for high speed lane detection, the vanishing line estimation and the optimal extraction of region of interest for lane boundary (ROI-LB) can be processed to reduction of detection region in which high speed processing is enabled. Image feature information is extracted only in the ROI-LB. Road lane is extracted using a non-parametric model fitting and Hough transform within the ROI-LB. With simultaneous processing of noise reduction and edge enhancement using the Laplacian filter, the reliability of feature extraction can be increased for various road lane patterns. Since outliers of edge at each block can be removed with clustering of edge orientation for each block within the ROI-LB, the performance of lane detection can be greatly improved. The various real road experimental results are presented to evaluate the effectiveness of the proposed method.

Adaptive Key-point Extraction Algorithm for Segmentation-based Lane Detection Network (세그멘테이션 기반 차선 인식 네트워크를 위한 적응형 키포인트 추출 알고리즘)

  • Sang-Hyeon Lee;Duksu Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Deep-learning-based image segmentation is one of the most widely employed lane detection approaches, and it requires a post-process for extracting the key points on the lanes. A general approach for key-point extraction is using a fixed threshold defined by a user. However, finding the best threshold is a manual process requiring much effort, and the best one can differ depending on the target data set (or an image). We propose a novel key-point extraction algorithm that automatically adapts to the target image without any manual threshold setting. In our adaptive key-point extraction algorithm, we propose a line-level normalization method to distinguish the lane region from the background clearly. Then, we extract a representative key point for each lane at a line (row of an image) using a kernel density estimation. To check the benefits of our approach, we applied our method to two lane-detection data sets, including TuSimple and CULane. As a result, our method achieved up to 1.80%p and 17.27% better results than using a fixed threshold in the perspectives of accuracy and distance error between the ground truth key-point and the predicted point.

Vehicle Plate Extraction Algorithm for an Exculsive Bus Lane (버스 전용차선에서의 차량 번호판 추출 알고리즘)

  • 설성욱;이상찬;주재흠;강현인;남기곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.31-37
    • /
    • 2001
  • License plate recognition system for an exclusive bus-lane is made of 5 core parts which are vehicle detection, image acquisition individual character extraction, character recognition and data transmission. Among them, the accuracy of license plate extraction can bring effect significantly to the accuracy of a whole system recognition rate also the more exact extraction of license plate is required in various weather and environment conditions. Therefore in this paper we propose a plat extraction algorithm that makes pyramid structure to reduced the extraction processing time binarizes plate's template region using adaptive thresholding extracts candidate region containing plate, and verifies a final region using plate character distribution characteristics among the candidates. Experimenal results were exactly extracted the license plate region by using proposed method to the image obtained in an exclusive bus-lane with various weather and environment conditions.

  • PDF