• Title/Summary/Keyword: Landslide Susceptibility Mapping

Search Result 47, Processing Time 0.026 seconds

LANDSLIDE SUSCEPTIBILITY MAPPING AND VERIFICATION USING THE GIS AND BAYESIAN PROBABILITY MODEL IN BOEUN, KOREA

  • Choi, Jae-Won;Lee, Sa-Ro;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.100-100
    • /
    • 2003
  • The purpose of this study is to reveals spatial relationships between landslides and geospatial data set, map the landslide susceptibility using the relationships and verify the landslide susceptibility using the landslide occurrence data in Bosun area in 1998. Landslide locations were detected from aerial photography and field survey and topography, soil, forest, and land use data sets were constructed as a spatial database using GIS. As the landslide occurrence factors, slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of wood and land use were used. Is extract the relationship between landslides and geospatial database, Bayesian probability methods, likelihood ratio and weight of evidence, were applied and the ratio and contrast value that is W$\^$+/- W$\^$-/ were calculated. The landslide susceptibility index was calculated by summation of the likelihood ratio and contrast value and the landslide susceptibility maps were generated using the index. As a result, it is expected that spatial relationships between landslides and geospatial database is helpful to explain the characteristics of landslide and the landslide susceptibility map is used to reduce associated hazards, and to plan land use and construction.

  • PDF

APPLICATION OF LOGISTIC REGRESS10N A MODEL FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AT JANGHUNG, KOREA

  • Saro, Lee;Choi, Jae-Won;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.64-64
    • /
    • 2003
  • The aim of this study is to apply and verify of logistic regression at Janghung, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of IRS satellite images, field surveys, and maps of the topography, soil type, forest cover, geology and land use were constructed to spatial database. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography were calculated from the topographic database.13${\times}$1ure, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter and density of forest were extracted from the forest database. Land use was classified from the Landsat TM image satellite image. As each factor's ratings, the logistic regression coefficient were overlaid for landslide susceptibility mapping. Then the landslide susceptibility map was verified and compared using the existing landslide location. The results can be used to reduce hazards associated with landslides management and to plan land use and construction.

  • PDF

APPLICATION OF LIKELIHOOD RATIO A MODEL FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AT JANGHUNG, KOREA

  • Choi, Jae-Won;Lee, Saro;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.63-63
    • /
    • 2003
  • The aim of this study is to apply and verify of Bayesian probability model, the likelihood ratio and statistical model, at Janghung, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of IRS satellite images, field surveys, and maps of the topography, soil type, forest cover, geology and land use were constructed to spatial database. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography were calculated from the topographic database. Texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter and density of forest were extracted from the forest database. Land use was classified from the Landsat TM image satellite image. As each factor's ratings, the likelihood ratio coefficient were overlaid for landslide susceptibility mapping, Then the landslide susceptibility map was verified and compared using the existing landslide location. The results can be used to reduce hazards associated with landslides management and to plan land use and construction.

  • PDF

CROSS- VALIDATION OF LANDSLIDE SUSCEPTIBILITY MAPPING IN KOREA

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.291-293
    • /
    • 2004
  • The aim of this study was to cross-validate a spatial probabilistic model of landslide likelihood ratios at Boun, Janghung and Yongin, in Korea, using a Geographic Information System (GIS). Landslide locations within the study areas were identified by interpreting aerial photographs, satellite images and field surveys. Maps of the topography, soil type, forest cover, lineaments and land cover were constructed from the spatial data sets. The 14 factors that influence landslide occurrence were extracted from the database and the likelihood ratio of each factor was computed. 'Landslide susceptibility maps were drawn for these three areas using likelihood ratios derived not only from the data for that area but also using the likelihood ratios calculated from each of the other two areas (nine maps in all) as a cross-check of the validity of the method For validation and cross-validation, the results of the analyses were compared, in each study area, with actual landslide locations. The validation and cross-validation of the results showed satisfactory agreement between the susceptibility map and the existing landslide locations.

  • PDF

Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models (Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구)

  • Lee, Saro;Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.299-316
    • /
    • 2019
  • The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.

Analysis of the relationships between topographic factors and landslide occurrence and their application to landslide susceptibility mapping: a case study of Mingchukur, Uzbekistan

  • Kadirhodjaev, Azam;Kadavi, Prima Riza;Lee, Chang-Wook;Lee, Saro
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.1053-1067
    • /
    • 2018
  • This paper uses a probability-based approach to study the spatial relationships between landslides and their causative factors in the Mingchukur area, Bostanlik districts of Tashkent, Uzbekistan. The approach is based on digital databases and incorporates methods including probability analysis, spatial pattern analysis, and interactive mapping. First, an object-oriented conceptual model for describing landslide events is proposed, and a combined database of landslides and environmental factors is constructed by integrating various databases within a unifying conceptual framework. The frequency ratio probability model and landslide occurrence data are linked for interactive, spatial evaluation of the relationships between landslides and their causative factors. In total, 15 factors were analyzed, divided into topography, hydrology, and geology categories. All analyzed factors were also divided into numerical and categorical types. Numerical factors are continuous and were evaluated according to their $R^2$ values. A landslide susceptibility map was constructed based on conditioning factors and landslide occurrence data using the frequency ratio model. Finally, the map was validated and the accuracy showed the satisfactory value of 83.3%.

Development and application of artificial neural network for landslide susceptibility mapping and its verfication at Janghung, Korea

  • Yu, Young-Tae;Lee, Moung-Jin;Won, Joong-Sun
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.77-82
    • /
    • 2003
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the developed techniques to the study area of janghung in Korea. Landslide locations were identified in the study area from interpretation of satellite image and field survey data, and a spatial database of the topography, soil, forest and land use were consturced. The 13 landslide-related factors were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods, and the susceptibility map was made with a e15 program. For this, the weights of each factor were determinated in 5 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated using the weights and the susceptibility maps were made with a GIS to the 5 cases. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to analyze the landslide susceptibility.

  • PDF

GIS-based Landslide Susceptibility Mapping of Bhotang, Nepal using Frequency Ratio and Statistical Index Methods

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.357-364
    • /
    • 2017
  • The purpose of the study is to develop and validate landslide susceptibility map of Bhotang village development committee, Nepal using FR (Frequency Ration) and SI (Statistical Index) methods. For the purpose, firstly, a landslide inventory map was constructed based on mainly high resolution satellite images available in Google Earth Pro, and rest fieldwork as verification. Secondly, ten conditioning factors of landslide occurrence, namely: altitude, slope, aspect, mean topographic wetness index, landcover, normalized difference vegetation index, dominant soil, distance to river, distance to lineaments and rainfall, were derived and used for the development of landslide susceptibility map in GIS (Geographic Information System) environment. The landslide inventory of total 116 landslides was divided randomly such that 70% were used for training and remaining 30% for validating result by receiver operating characteristics curve analysis. The area under the curve were found to be greater than 0.7 indicating an acceptable susceptibility maps obtained using FR and SI methods in GIS for hilly region of Nepal.

Mapping Landslide Susceptibility Based on Spatial Prediction Modeling Approach and Quality Assessment (공간예측모형에 기반한 산사태 취약성 지도 작성과 품질 평가)

  • Al, Mamun;Park, Hyun-Su;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.53-67
    • /
    • 2019
  • The purpose of this study is to identify the quality of landslide susceptibility in a landslide-prone area (Jinbu-myeon, Gangwon-do, South Korea) by spatial prediction modeling approach and compare the results obtained. For this goal, a landslide inventory map was prepared mainly based on past historical information and aerial photographs analysis (Daum Map, 2008), as well as some field observation. Altogether, 550 landslides were counted at the whole study area. Among them, 182 landslides are debris flow and each group of landslides was constructed in the inventory map separately. Then, the landslide inventory was randomly selected through Excel; 50% landslide was used for model analysis and the remaining 50% was used for validation purpose. Total 12 contributing factors, such as slope, aspect, curvature, topographic wetness index (TWI), elevation, forest type, forest timber diameter, forest crown density, geology, landuse, soil depth, and soil drainage were used in the analysis. Moreover, to find out the co-relation between landslide causative factors and incidents landslide, pixels were divided into several classes and frequency ratio for individual class was extracted. Eventually, six landslide susceptibility maps were constructed using the Bayesian Predictive Discriminant (BPD), Empirical Likelihood Ratio (ELR), and Linear Regression Method (LRM) models based on different category dada. Finally, in the cross validation process, landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract success rate curve. The result showed that Bayesian, likelihood and linear models were of 85.52%, 85.23%, and 83.49% accuracy respectively for total data. Subsequently, in the category of debris flow landslide, results are little better compare with total data and its contained 86.33%, 85.53% and 84.17% accuracy. It means all three models were reasonable methods for landslide susceptibility analysis. The models have proved to produce reliable predictions for regional spatial planning or land-use planning.

Development of Landslide Hazard Map Using Environmental Information System: Case on the Gyeongsangbuk-do Province (환경정보시스템을 이용한 산사태 발생위험 예측도 작성: 경상북도를 중심으로)

  • Bae, Min-Ki;Jung, Kyu-Won;Park, Sang-Jun
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1189-1197
    • /
    • 2009
  • The purpose of this research was develop tailored landslide hazard assessment table (LHAT) in Gyeongsangbuk-do Province and propose building strategies on environmental information system to estimate landslide hazard area according to LHAT. To accomplish this purpose, this research investigated factors occurring landslide at 172 landslide occurred sites in 23 city and county of Gyeongsangbuk-do Province and analyzed what factors effected landslide occurrence quantity using the multiple statistics of quantification method(I). The results of analysis, factors affecting landslide occurrence quantity were shown in order of slope position, slope length, bedrock, aspect, forest age, slope form and slope. And results of the development of LHAT for predict mapping of landslide-susceptible area in Gyeongsangbuk-do Province, total score range was divided that 107 under is stable area(IV class), 107~176 is area with little susceptibility to landslide(III class), 177~246 is area with moderate susceptibility to landslide(II class), above 247 area with severe susceptibility to landslide(I class). According to LHAT, this research built landslide attribute database and made 7 digital theme maps at mountainous area located in Goryeong Gun, Seongju-Gun, and Kimcheon-City. The results of prediction on degree of landslide hazard using environmental information system, area with little susceptibility to landslide(III class) occupied 65.56% and severe susceptibility to landslide(I class) occupied 0.51%.