• 제목/요약/키워드: Landslide Susceptibility Assessment

검색결과 34건 처리시간 0.021초

A Comparative Analysis of Landslide Susceptibility Assessment by Using Global and Spatial Regression Methods in Inje Area, Korea

  • Park, Soyoung;Kim, Jinsoo
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.579-587
    • /
    • 2015
  • Landslides are major natural geological hazards that result in a large amount of property damage each year, with both direct and indirect costs. Many researchers have produced landslide susceptibility maps using various techniques over the last few decades. This paper presents the landslide susceptibility results from the geographically weighted regression model using remote sensing and geographic information system data for landslide susceptibility in the Inje area of South Korea. Landslide locations were identified from aerial photographs. The eleven landslide-related factors were calculated and extracted from the spatial database and used to analyze landslide susceptibility. Compared with the global logistic regression model, the Akaike Information Criteria was improved by 109.12, the adjusted R-squared was improved from 0.165 to 0.304, and the Moran’s I index of this analysis was improved from 0.4258 to 0.0553. The comparisons of susceptibility obtained from the models show that geographically weighted regression has higher predictive performance.

Determination and application of the weights for landslide susceptibility mapping using an artificial neural network

  • Lee, Moung-Jin;Won, Joong-Sun;Yu, Young-Tae
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 공동 춘계학술대회 논문집
    • /
    • pp.71-76
    • /
    • 2003
  • The purpose of this study is the development, application and assessment of probability and artificial neural network methods for assessing landslide susceptibility in a chosen study area. As the basic analysis tool, a Geographic Information System (GIS) was used for spatial data management. A probability method was used for calculating the rating of the relative importance of each factor class to landslide occurrence, For calculating the weight of the relative importance of each factor to landslide occurrence, an artificial neural network method was developed. Using these methods, the landslide susceptibility index was calculated using the rating and weight, and a landslide susceptibility map was produced using the index. The results of the landslide susceptibility analysis, with and without weights, were confirmed from comparison with the landslide location data. The comparison result with weighting was better than the results without weighting. The calculated weight and rating can be used to landslide susceptibility mapping.

  • PDF

인공신경망을 이용한 산사태 취약성 분석 (Landslide Susceptibility Analysis Using Artificial Neural Networks)

  • 이사로;류주형;민경덕;원중선
    • 자원환경지질
    • /
    • 제33권4호
    • /
    • pp.333-340
    • /
    • 2000
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and apply the newly developed techniques for assessment of landslide susceptibility to study areas, Yongin. Landslide locations detected from interpretation of aerial photo and field survey, and topographic, soil and geological maps of the Yongin area were collected. The data of the locations of land-slide, slope, soil texture, topography and lithology were constructed into spatial database using GIS. Using the factors, landslide susceptibility was analyzed by artificial neural network methods. The results of the analysis were verified using the landslide location data. The validation results showed satisfactory agreement between the susceptibility map and landslide location data.

  • PDF

베이지안 예측모델을 활용한 농업 및 인공 인프라의 산사태 재해 위험 평가 (Landslide Risk Assessment of Cropland and Man-made Infrastructures using Bayesian Predictive Model)

  • 알-마문;장동호
    • 한국지형학회지
    • /
    • 제27권3호
    • /
    • pp.87-103
    • /
    • 2020
  • The purpose of this study is to evaluate the risk of cropland and man-made infrastructures in a landslide-prone area using a GIS-based method. To achieve this goal, a landslide inventory map was prepared based on aerial photograph analysis as well as field observations. A total of 550 landslides have been counted in the entire study area. For model analysis and validation, extracted landslides were randomly selected and divided into two groups. The landslide causative factors such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in the analysis. Moreover, to identify the correlation between landslides and causative factors, pixels were divided into several classes and frequency ratio was also extracted. A landslide susceptibility map was constructed using a bayesian predictive model (BPM) based on the entire events. In the cross validation process, the landslide susceptibility map as well as observation data were plotted with a receiver operating characteristic (ROC) curve then the area under the curve (AUC) was calculated and tried to extract a success rate curve. The results showed that, the BPM produced 85.8% accuracy. We believed that the model was acceptable for the landslide susceptibility analysis of the study area. In addition, for risk assessment, monetary value (local) and vulnerability scale were added for each social thematic data layers, which were then converted into US dollar considering landslide occurrence time. Moreover, the total number of the study area pixels and predictive landslide affected pixels were considered for making a probability table. Matching with the affected number, 5,000 landslide pixels were assumed to run for final calculation. Based on the result, cropland showed the estimated total risk as US $ 35.4 million and man-made infrastructure risk amounted to US $ 39.3 million.

로지스틱 회귀분석모델을 활용한 평창군 진부 지역의 산사태 재해의 인명 위험 평가 (Life Risk Assessment of Landslide Disaster in Jinbu Area Using Logistic Regression Model)

  • 라하누마 빈테 라시드 우르미;알-마문;장동호
    • 한국지형학회지
    • /
    • 제27권2호
    • /
    • pp.65-80
    • /
    • 2020
  • This paper deals with risk assessment of life in a landslide-prone area by a GIS-based modeling method. Landslide susceptibility maps can provide a probability of landslide prone areas to mitigate or proper control this problems and to take any development plan and disaster management. A landslide inventory map of the study area was prepared based on past historical information and aerial photography analysis. A total of 550 landslides have been counted at the whole study area. The extracted landslides were randomly selected and divided into two different groups, 50% of the landslides were used for model calibration and the other were used for validation purpose. Eleven causative factors (continuous and thematic) such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in hazard analysis. The correlation between landslides and these factors, pixels were divided into several classes and frequency ratio was also extracted. Eventually, a landslide susceptibility map was constructed using a logistic regression model based on entire events. Moreover, the landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract a success rate curve. Based on the results, logistic regression produced an 85.18% accuracy, so we believed that the model was reliable and acceptable for the landslide susceptibility analysis on the study area. In addition, for risk assessment, vulnerability scale were added for social thematic data layer. The study area predictive landslide affected pixels 2,000 and 5,000 were also calculated for making a probability table. In final calculation, the 2,000 predictive landslide affected pixels were assumed to run. The total population causalities were estimated as 7.75 person that was relatively close to the actual number published in Korean Annual Disaster Report, 2006.

공간 예측 모델을 이용한 산사태 재해의 인명 위험평가 (Life Risk Assessment of Landslide Disaster Using Spatial Prediction Model)

  • 장동호
    • 환경영향평가
    • /
    • 제15권6호
    • /
    • pp.373-383
    • /
    • 2006
  • The spatial mapping of risk is very useful data in planning for disaster preparedness. This research presents a methodology for making the landslide life risk map in the Boeun area which had considerable landslide damage following heavy rain in August, 1998. We have developed a three-stage procedure in spatial data analysis not only to estimate the probability of the occurrence of the natural hazardous events but also to evaluate the uncertainty of the estimators of that probability. The three-stage procedure consists of: (i)construction of a hazard prediction map of "future" hazardous events; (ii) validation of prediction results and estimation of the probability of occurrence for each predicted hazard level; and (iii) generation of risk maps with the introduction of human life factors representing assumed or established vulnerability levels by combining the prediction map in the first stage and the estimated probabilities in the second stage with human life data. The significance of the landslide susceptibility map was evaluated by computing a prediction rate curve. It is used that the Bayesian prediction model and the case study results (the landslide susceptibility map and prediction rate curve) can be prepared for prevention of future landslide life risk map. Data from the Bayesian model-based landslide susceptibility map and prediction ratio curves were used together with human rife data to draft future landslide life risk maps. Results reveal that individual pixels had low risks, but the total risk death toll was estimated at 3.14 people. In particular, the dangerous areas involving an estimated 1/100 people were shown to have the highest risk among all research-target areas. Three people were killed in this area when landslides occurred in 1998. Thus, this risk map can deliver factual damage situation prediction to policy decision-makers, and subsequently can be used as useful data in preventing disasters. In particular, drafting of maps on landslide risk in various steps will enable one to forecast the occurrence of disasters.

산사태 취약성 분석 연구를 위한 인공신경망 기법 개발 (Development of Artificial Neural Network Techniques for Landslide Susceptibility Analysis)

  • Chang, Buhm-Soo;Park, Hyuck-Jin;Lee, Saro;Juhyung Ryu;Park, Jaewon;Lee, Moung-Jin
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.499-506
    • /
    • 2002
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural networks and to apply the newly developed techniques for assessment of landslide susceptibility to the study area of Yongin in Korea. Landslide locations were identified in the study area from interpretation of aerial Photographs and field survey data, and a spatial database of the topography, soil type and timber cover were constructed. The landslide-related factors such as topographic slope, topographic curvature, soil texture, soil drainage, soil effective thickness, timber age, and timber diameter were extracted from the spatial database. Using those factors, landslide susceptibility and weights of each factor were analyzed by two artificial neural network methods. In the first method, the landslide susceptibility index was calculated by the back propagation method, which is a type of artificial neural network method. Then, the susceptibility map was made with a GIS program. The results of the landslide susceptibility analysis were verified using landslide location data. The verification results show satisfactory agreement between the susceptibility index and existing landslide location data. In the second method, weights of each factor were determinated. The weights, relative importance of each factor, were calculated using importance-free characteristics method of artificial neural networks.

  • PDF

공간예측모형에 기반한 산사태 취약성 지도 작성과 품질 평가 (Mapping Landslide Susceptibility Based on Spatial Prediction Modeling Approach and Quality Assessment)

  • 알-마문;박현수;장동호
    • 한국지형학회지
    • /
    • 제26권3호
    • /
    • pp.53-67
    • /
    • 2019
  • The purpose of this study is to identify the quality of landslide susceptibility in a landslide-prone area (Jinbu-myeon, Gangwon-do, South Korea) by spatial prediction modeling approach and compare the results obtained. For this goal, a landslide inventory map was prepared mainly based on past historical information and aerial photographs analysis (Daum Map, 2008), as well as some field observation. Altogether, 550 landslides were counted at the whole study area. Among them, 182 landslides are debris flow and each group of landslides was constructed in the inventory map separately. Then, the landslide inventory was randomly selected through Excel; 50% landslide was used for model analysis and the remaining 50% was used for validation purpose. Total 12 contributing factors, such as slope, aspect, curvature, topographic wetness index (TWI), elevation, forest type, forest timber diameter, forest crown density, geology, landuse, soil depth, and soil drainage were used in the analysis. Moreover, to find out the co-relation between landslide causative factors and incidents landslide, pixels were divided into several classes and frequency ratio for individual class was extracted. Eventually, six landslide susceptibility maps were constructed using the Bayesian Predictive Discriminant (BPD), Empirical Likelihood Ratio (ELR), and Linear Regression Method (LRM) models based on different category dada. Finally, in the cross validation process, landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract success rate curve. The result showed that Bayesian, likelihood and linear models were of 85.52%, 85.23%, and 83.49% accuracy respectively for total data. Subsequently, in the category of debris flow landslide, results are little better compare with total data and its contained 86.33%, 85.53% and 84.17% accuracy. It means all three models were reasonable methods for landslide susceptibility analysis. The models have proved to produce reliable predictions for regional spatial planning or land-use planning.

환경정보시스템을 이용한 산사태 발생위험 예측도 작성: 경상북도를 중심으로 (Development of Landslide Hazard Map Using Environmental Information System: Case on the Gyeongsangbuk-do Province)

  • 배민기;정규원;박상준
    • 한국환경과학회지
    • /
    • 제18권11호
    • /
    • pp.1189-1197
    • /
    • 2009
  • The purpose of this research was develop tailored landslide hazard assessment table (LHAT) in Gyeongsangbuk-do Province and propose building strategies on environmental information system to estimate landslide hazard area according to LHAT. To accomplish this purpose, this research investigated factors occurring landslide at 172 landslide occurred sites in 23 city and county of Gyeongsangbuk-do Province and analyzed what factors effected landslide occurrence quantity using the multiple statistics of quantification method(I). The results of analysis, factors affecting landslide occurrence quantity were shown in order of slope position, slope length, bedrock, aspect, forest age, slope form and slope. And results of the development of LHAT for predict mapping of landslide-susceptible area in Gyeongsangbuk-do Province, total score range was divided that 107 under is stable area(IV class), 107~176 is area with little susceptibility to landslide(III class), 177~246 is area with moderate susceptibility to landslide(II class), above 247 area with severe susceptibility to landslide(I class). According to LHAT, this research built landslide attribute database and made 7 digital theme maps at mountainous area located in Goryeong Gun, Seongju-Gun, and Kimcheon-City. The results of prediction on degree of landslide hazard using environmental information system, area with little susceptibility to landslide(III class) occupied 65.56% and severe susceptibility to landslide(I class) occupied 0.51%.

데이터 탐색을 활용한 딥러닝 기반 제천 지역 산사태 취약성 분석 (Assessment of Landslide Susceptibility in Jecheon Using Deep Learning Based on Exploratory Data Analysis)

  • 안상아;이정현;박혁진
    • 지질공학
    • /
    • 제33권4호
    • /
    • pp.673-687
    • /
    • 2023
  • 데이터 탐색은 수집한 데이터를 다양한 각도에서 관찰 및 이해하는 과정으로 데이터 구조 및 특성 분석을 통해 데이터의 분포와 상관관계를 파악하는 과정이다. 일반적으로 산사태는 다양한 인자들에 의해 유발되고 발생 지역에 따라 유발 인자들이 미치는 영향이 상이하기 때문에 산사태 취약성 분석 이전에 데이터 탐색을 통해 유발 인자 사이의 상관관계를 파악하고 특징적인 유발 인자를 선별한다면 효과적인 분석을 수행할 수 있다. 따라서 본 연구는 데이터 탐색이 예측 모델의 성능에 미치는 결과를 확인하기 위해 두 단계에 걸친 데이터 탐색을 수행하여 인자를 선별하고, 선별된 유발 인자들 사이의 조합과 23개의 전체 유발 인자 조합을 활용하여 딥러닝 기반의 산사태 취약성 분석을 진행하였다. 데이터 탐색 과정에서는 Pearson 상관계수 heat map과 random forest의 인자 중요도 histogram을 활용하였으며, 딥러닝 기반 산사태 취약성 분석 결과의 정확도는 분석을 통해 획득한 산사태 취약 지수 값을 이용해 제작한 산사태 취약성 지도를 confusion matrix 기반의 정확도 검증 방법을 통해 분석하였다. 분석 결과, 전체 23개의 인자를 사용한 산사태 취약성 해석 결과는 55.90%의 낮은 정확도를 보였지만 한 단계의 탐색을 거쳐 선별한 13개 인자를 활용한 취약성 해석 결과는 81.25%의 분석 정확도를 보였고, 두 단계 데이터 탐색을 모두 수행하여 선별된 9개의 유발 인자를 활용한 산사태 취약성 분석 결과는 92.80%로 가장 높은 정확도를 보였다. 따라서 데이터 탐색을 통해 특징적인 유발 인자를 선별하고 분석에 활용하는 것이 산사태 취약성 분석에서 더 좋은 분석 성능을 기대할 수 있음을 확인하였다.