• Title/Summary/Keyword: Landscape Resource

Search Result 363, Processing Time 0.021 seconds

Lessons from Cross-Scale Studies of Water and Carbon Cycles in the Gwangneung Forest Catchment in a Complex Landscape of Monsoon Korea (몬순기후와 복잡지형의 특성을 갖는 광릉 산림유역의 물과 탄소순환에 대한 교차규모 연구로부터의 교훈)

  • Lee, Dong-Ho;Kim, Joon;Kim, Su-Jin;Moon, Sang-Ki;Lee, Jae-Seok;Lim, Jong-Hwan;Son, Yow-Han;Kang, Sin-Kyu;Kim, Sang-Hyun;Kim, Kyong-Ha;Woo, Nam-Chil;Lee, Bu-Yong;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.149-160
    • /
    • 2007
  • KoFlux Gwangneung Supersite comprises complex topography and diverse vegetation types (and structures), which necessitate complementary multi-disciplinary measurements to understand energy and matter exchange. Here, we report the results of this ongoing research with special focuses on carbon/water budgets in Gwangneung forest, implications of inter-dependency between water and carbon cycles, and the importance of hydrology in carbon cycling under monsoon climate. Comprehensive biometric and chamber measurements indicated the mean annual net ecosystem productivity (NEP) of this forest to be ${\sim}2.6\;t\;C\;ha^{-1}y^{-1}$. In conjunction with the tower flux measurement, the preliminary carbon budget suggests the Gwangneung forest to be an important sink for atmospheric $CO_2$. The catchment scale water budget indicated that $30\sim40%$ of annual precipitation was apportioned to evapotranspiration (ET). The growing season average of the water use efficiency (WUE), determined from leaf carbon isotope ratios of representative tree species, was about $12{\mu}mol\;CO_2/mmol\;H_2O$ with noticeable seasonal variations. Such information on ET and WUE can be used to constrain the catchment scale carbon uptake. Inter-annual variations in tree ring growth and soil respiration rates correlated with the magnitude and the pattern of precipitation during the growing season, which requires further investigation of the effect of a monsoon climate on the catchment carbon cycle. Additionally, we examine whether structural and functional units exist in this catchment by characterizing the spatial heterogeneity of the study site, which will provide the linkage between different spatial and temporal scale measurements.

Resources Use Characteristics of Higher Fungi in Byeonsanbando National Park (변산반도 국립공원 고등균류의 자원이용적 특성)

  • Jang, Seog-Ki
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.2
    • /
    • pp.230-251
    • /
    • 2017
  • According to the survey on higher fungi from 2009 to 2011 and also in 2015 in Byeonsanbando National Park, a total of 2 division, 6 class, 18 orders, 61 families, 157 genera and 323 species were observed. In case of Agaricales, there were 23 families, 67 genera and 153 species; Boletales, there were 6 families, 27 genera and 45 species; Russulales, there were 3 family, 4 genera and 40 species; Polyporales, there were 6 family, 21 genera, 28 species. Thus, most of them belonged to the following 4 orders: Agaricales, Russulales, Boletales and Polyporales. Dominant species belonged to Boletaceae (37 species), Russulaceae (36 species), Agaricaceae (28 species) and Amamtaceae (25 species). For the habitat environment, the ectomycorrhizal mushrooms were 40.2% (poisonous mushrooms, 46 species; edible & medicinal mushrooms, 51 species; unknown edible & poisonous mushrooms, 26 species), litter decomposing and wood rotting fungi 35.3%(poisonous mushrooms, 10 species; edible & medicinal mushrooms, 52 species; unknown edible & poisonous mushrooms, 46species), grounding Fungi 22.3%(poisonous mushrooms, 8 species; edible & medicinal mushrooms, 31 species; unknown edible & poisonous mushrooms, 29 species). Monthly, most of poisonous mushrooms, edible & medicinal mushrooms and unknown edible & poisonous mushrooms were found in July and August. In terms of altitude, the most species were observed at 1~99m and the populations dropped by a significant level at an altitude of 200m or higher. It seemed that the most diversified poisonous mushrooms, edible & medicinal mushrooms and unknown edible & poisonous mushrooms occurred at climate conditions with a mean air temperature at $24.0{\sim}25.9^{\circ}C$, the highest air temperature at $28.0{\sim}29.9^{\circ}C$, the lowest air temperature at $20.0{\sim}21.9^{\circ}C$, a relative humidity at 77.0~79.9% and a rainfall of 300.0~499.9mm.

Analysis of Soil Changes in Vegetable LID Facilities (식생형 LID 시설의 내부 토양 변화 분석)

  • Lee, Seungjae;Yoon, Yeo-jin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.