• Title/Summary/Keyword: Landscape Heterogeneity Index

Search Result 8, Processing Time 0.027 seconds

Pattern and process in MAEUL, a traditional Korean rural landscape

  • Kim, Jae-Eun;Hong, Sun-Kee
    • Journal of Ecology and Environment
    • /
    • v.34 no.2
    • /
    • pp.237-249
    • /
    • 2011
  • Land-use changes due to the socio-economic environment influence landscape patterns and processes, which affect habitats and biodiversity. This study considers the effects of such land-use changes, particularly on the traditional rural "Maeul" forested landscape, by analyzing landscape structure and vegetation changes. Three study areas were examined that have seen their populations decrease and age over the last few decades. Five types of plant life-forms (Raunkier life-forms) were distinguished to investigate ecosystem function. Principle component analysis was used to understand vegetation dynamics and community characteristics based on a vegetation similarity index. Ordination analysis transformed species-coverage data was introduced to clarify vegetation dynamics. Landscape indices, such as area metrics, edge metrics, and shape metrics, showed that spatial heterogeneity has increased over time in all areas. Pinus densiflora was the main land-use plant type in all study areas but decreased over time, whereas Quercus spp. increased. Over a decade, P. densiflora communities shifted to deciduous oak and plantation. These findings indicate that the impact of human activities on the Maeul landscape is twofold. While forestry activities caused heavy disturbances, the abandonment of traditional human activities has led to natural succession. Furthermore, it can be concluded that the type and intensity of these human impacts on landscape heterogeneity relate differently to vegetation succession. This reflects the cause and consequence of patch dynamics. We discuss an approach for sustainable landscape planning and management of the Maeul landscape based on traditional management.

Analysis of Fragmentation and Heterogeneity of Tancheon Watershed by Land Development Projects (개발에 따른 탄천유역의 파편화 및 이질성분석)

  • Lee, Dong-Kun;Yi, Hyun-Yi;Kim, Eun-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.6
    • /
    • pp.120-129
    • /
    • 2007
  • Rapid urbanization has transformed the spatial pattern of urban land use or cover. This paper concentrates that changed characteristics of landscape structure in the Tancheon Watershed, from 1995 to 2003 were investigated using land cover map. We used FRAGSTATS software to calculate landscape indices to characterize the landscape structure. We found that built up area has been increased rapidly during the study period, while cultivated area and forest area have been decreased rapidly in the same period. From 1995 to 2003, built up area was increased from 19.73% to 39.62% and cultivated area and forest area was decreased 17.60% to 5.97% and 58.31% to 49.41%. Number of patches, mean euclidean nearest-neighbor distance, contagion index, Shannon's diversity index increased considerably from 1995 to 2003, also suggesting the landscape in the study area became more fragmented and heterogeneous. but because of continuously fragmentation, landscape became homogeneity. The study demonstrates that landscape metrics can be a useful indicator in landscape monitoring and landscape assessment.

Analyzing Landscape Ecological Characteristics of Biotope Types in Rural Eco-Villages - Focusing on Eco-Villages of Chonnam Region Designated by Ministry of Environment - (비오톱유형에 의한 농촌생태마을의 경관생태학적 특성분석 -환경부지정 생태마을 중 전남 일부 지역을 대상으로-)

  • Kim, Keun-Ho;Cho, Tong-Buhm;Kim, Mi-Hyang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.63-77
    • /
    • 2006
  • The research aim is to classify biotope types of rural eco-villages designed by ministry of environment and analyze landscape ecological characteristics of them. This information would provide information on eco-villages' potential and specific needs to improve landscape ecological structure of eco-villages. Two eco-villages, designated by ministry of environment, in Yoocheon-ri and Sanduk-ri were selected and the landscape ecological metrics used in this study were Area, Shannon diversity index, Shape index, Distance index. The results are as follows. 1) There were five biotope types in large-scale classification, 13 biotope types m Sanduk-ri and 9 biotope types in Yoocheon-ri in middle-scale classification, 31 biotope types in Sanduk-ri and 24 biotope types in Yoocheon-ri in small-scale classification. 2) In the case of area, artificial biotope types, such as artificial forest, agricultural irrigation canal, wet paddy, dry paddy and residential area, covered more than 80% of total area. However, natural biotope types, such as natural forest, river, reservoir, covered just more than 10% of total area. In details, an orchard (26.69%) was the dominant biotope type, followed by artificial forest (19.10%) in Sanduk-ri and the first most abundant biotope type was artificial forest (49.71%), followed by wet paddy (15.95%) in Yoocheon-ri. 3) The result of Shannon diversity index indicated that Sanduk-ri (2.158) had more heterogeneity landscape, rather than Yoocheon-ri (2.051). 4) In the case of shape index, road (13.09) had more complex and irregular shape than either agricultural irrigation canal (3.35) or artificial forest (2.46) in Sanduk-ri. Road (6.52) was also the most irregular biotope shape, followed by river (5.70) and agricultural irrigation canal (4.78) in Yoocheon-ri. 5) Mean Nearest-neighbour Distance (MND) was smallest in wet paddy and dry paddy biotope types in the two study area, suggesting that these biotope types were concentrated within these study areas. From the result, this research suggested information to protect and improve biotopes of eco-villages in the landscape ecological terms. To achieve this improvement plan, there should be strong support by ministry of environment and local governments.

An Advanced Methodology of Landscape Character Assessment (진보된 경관특성평가 방법론)

  • Kim Keun-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.3 s.110
    • /
    • pp.1-17
    • /
    • 2005
  • 오늘날 지속가능한 발전의 주요 목적으로서 환경의 효과적 보호와 신중한 자연자원의 이용이 강조된다. 이와 같은 목적들을 성취하기 위해서 종합적인 경관 정보가 필수적이다. 한국의 경우, 도시화는 전통적인 농촌 경관 변화, 산림 손실과 단편화 등 많은 환경 문제를 야기했다. 특히 산림이 높은 생물 다양성 가치를 갖고 있는 한국으로서는 산림 손실과 단편화는 생태관점에서 보면 아주 치명적이다. 현재 개인 또는 공공 부분 개발 프로젝트를 위한 환경 영향 평가의 일부분으로 시각 경관 영향 평가가 요구된다. 그러나 이런 시각 경관 영향 평가는 단지 전체 경관의 일부분의 경관 정보만을 제공하고, 특히 현재 경관 평가에서는 경관의 생물 다양성 가치를 평가하지 않는다. 본 연구는 이와 같은 문제점들을 극복하고 한국 상황에 맞는 지속가능한 경관 계획을 위한 필수적인 종합 경관 정보를 제공하기 위해서, 경관 특성과 생물 다양성 가치 평가를 위한 생태 이질성 지수를 결합한 진보된 경관 특성 평가 방법론을 제시하는데 그 목적이 있다. 이 방법론을 통해 경관 특성 평가에서 12가지 경관 특성 유형(type)을 분류하였고 그것의 분포, 경관 특성적 형태, 경관 특성에 부정적인 영향을 줄 수 있는 개발 압력 등을 분석하고 서술하였다. 분석 결과, 주택과 산업 단지 개발, 농지 형질 패턴 변경, 수변 공간 개발 등이 주요 개발 압력으로 나타났다. 경관 생태 이질성 평가 결과에서는 도시근교 지역과 농촌 경관 특성 유형 지역에서 잠재적 생물 다양성 가치가 높았다. 산림 지역 경관 특성 유형에서는 잠재적 생물 다양성 가치가 중간 수치로 나온 반면 도시 경관 특성 유형에서의 잠재적 생물 다양성 가치는 아주 낮았다. 비록 제한된 데이터와 경관 생태 이질성 지수 사용으로 인한 문제점들(스케일 종속적, 변화 패턴이 예측하기 힘든 지수, 자의적인 분류시 다른 결과 발생, 더 종합적인 생물 다양성 잠재력을 평가하기 위해서는 더 많은 다른 경관 생태 지수 필요 등)이 제기되었지만, 이 연구에서 제시된 진보된 경관 특성 평가 방법론을 통해 얻은 종합적인 경관 정보가 지속가능한 경관계획을 할 때 어떻게 잘 활용되어질 수 있는지 예로써 증명하였다. 그 결과 진보된 경관 특성 평가 방법론이 지속가능한 경관 계획을 위한 수단으로 사용될 수 있을 것으로 사료된다.

Spatial Planning of Climate Adaptation Zone to Promote Climate Change Adaptation for Endangered Species (생물다양성 보전을 위한 기후적응지역 설정 연구 -삵의 서식지를 중심으로-)

  • Lee, Dongkun;Baek, Gyounghye;Park, Chan;Kim, Hogul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.6
    • /
    • pp.111-117
    • /
    • 2011
  • This study attempts to facilitate climate change adaptation in conservation area by spatial planning of climate adaptation zone for endangered species. Spatial area is South Korea and select leopard cat (Prionailurus bengalensis) as a target species of this study. In order to specify the climate adaptation zone, firstly, Maximum entropy method (Maxent) was used to identify suitable habitat, and then core habitat was selected for leopard cat. Secondly, land use resistance index was evaluated and least cost distance was analyzed for target species. In this step we choose dispersal capacity of leopard cat to reflect species ecological characteristic. Finally, climate adaptation zone is described and adaptation measures are suggested. The presented approach could be generalized for application into conservation planning and restoration process. Furthermore, spatial planning of climate adaptation zone could increase heterogeneity of habitat and improve adaptive capacity of species and habitat itself.

The Structure of Plant Community in Jungdaesa-Birobong Area, Odaesan National Park (오대산국립공원 중대사-비로봉 구간 식물군집구조)

  • Han, Bong-ho;Choi, Jin-woo;Noh, Tai-hwan;Kim, Dong-wook
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.764-776
    • /
    • 2015
  • This study aims to identify the structure of the plant community, and the ecological succession sere and the change in the forest ecosystem in Jungdaesa-Birobong area, Odaesan National Park_(i._e., located at high altitudes(over 1,000m)). It seeks to offer the basic data for the planning of vegetation management. In order to verify the status of the forest vegetation between Jungdaesa-Birobong, seventeen plots(size is $20m{\times}20m$) were set up as research sites at high altitudes. Importance value, distribution by diameter at breast height(DBH), the growth volume and age of the sample trees, similarity index and species diversity index of each survey plot were analysed. According to the results of DCA(Detrended Correspondence Analysis), one of the multivariate statistical techniques. It was found that the plant communities were classified into five groups: community I_(Quercus mongolica-Tilia amurensis community), community II_(Q. mongolica-Deciduous broad-leaved community), community III_(Q. mongolica-Pinus koraiensis community), community IV_(Abies holophylla-Q. mongolica community) and community V_(A. holophylla-Deciduous broad-leaved community). Community I which is dominated by Quercus mongolica and Deciduous broad-leaved communities is located at an altitude of over 1,300 meters(ranging from 1,335m to 1,495m), the community IV and V which are dominated by Abies holophylla are located at an altitude of under 1,200 meters(ranging from 1,115m to 1,175m) and the community II and III which include the main species of Quercus mongolica, Pinus koraiensis and Abies holophylla are located at an altitude of between 1,160 meters and 1,300 meters. The results showed that Quercus mongolica tends to have a higher importance value of woody species at a higher altitude while Abies holophylla tends to have higher importance value at a lower altitude. For the importance value woody species and -DBH class distribution, the communites I, II and III are expected to continuously maintain the present status. Whereas, for the influence of communities IV and V, Q. mongolica is predicted to be weakened. The age of sample trees was between 85 and 161; the average age was 123. The index of Shannon's Species diversity (H') showed heterogeneity was found among community I_(i._e., located at high altitude) and communities IV and V_(i._e., located at low altitude). As a results of analysing the index of Shannon's Species diversity (H': unit: $400m^2$), community III showed the highest diversity intex with 1.1109 followed by community II with 1.0475, community I with 1.0125, community IV with 0.9918 and community V with 0.8686. This study verified that the index of Shannon's species was significantly different by plant communities. For instance, when comparing the index of Shannon's species diversity in Quercus mongolica communities of this study and that of past relevant research, the value of index is very similar. However, the diversity index for the community which is dominated by Abies holophylla showed lower value when compared to the results from past relevant research.

Optimal Spatial Scale for Land Use Change Modelling : A Case Study in a Savanna Landscape in Northern Ghana (지표피복변화 연구에서 최적의 공간스케일의 문제 : 가나 북부지역의 사바나 지역을 사례로)

  • Nick van de Giesen;Paul L. G. Vlek;Park Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.2 s.107
    • /
    • pp.221-241
    • /
    • 2005
  • Land Use and Land Cover Changes (LUCC) occur over a wide range of space and time scales, and involve complex natural, socio-economic, and institutional processes. Therefore, modelling and predicting LUCC demands an understanding of how various measured properties behave when considered at different scales. Understanding spatial and temporal variability of driving forces and constraints on LUCC is central to understanding the scaling issues. This paper aims to 1) assess the heterogeneity of land cover change processes over the landscape in northern Ghana, where intensification of agricultural activities has been the dominant land cover change process during the past 15 years, 2) characterise dominant land cover change mechanisms for various spatial scales, and 3) identify the optimal spatial scale for LUCC modelling in a savanna landscape. A multivariate statistical method was first applied to identify land cover change intensity (LCCI), using four time-sequenced NDVI images derived from LANDSAT scenes. Three proxy land use change predictors: distance from roads, distance from surface water bodies, and a terrain characterisation index, were regressed against the LCCI using a multi-scale hierarchical adaptive model to identify scale dependency and spatial heterogeneity of LUCC processes. High spatial associations between the LCCI and land use change predictors were mostly limited to moving windows smaller than 10$\times$10km. With increasing window size, LUCC processes within the window tend to be too diverse to establish clear trends, because changes in one part of the window are compensated elsewhere. This results in a reduced correlation between LCCI and land use change predictors at a coarser spatial extent. The spatial coverage of 5-l0km is incidentally equivalent to a village or community area in the study region. In order to reduce spatial variability of land use change processes for regional or national level LUCC modelling, we suggest that the village level is the optimal spatial investigation unit in this savanna landscape.

Species Diversity of Riparian Vegetation by Soil Chemical Properties and Water Quality in the Upper Stream of Mankyeong River (만경강 상류 수질 및 식생분포와 토양환경에 따른 하천식생의 종 다양성)

  • Lee, Kyeong-Bo;Kim, Chang-Hwan;Lee, Deog-Bae;Kim, Jong-Gu;Park, Chan-Won;Na, Seoung-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.100-110
    • /
    • 2003
  • This study was conducted to evaluate influence of chemical properties in the riparian on the species diversity and to get plant information for enhancement of natural purification in Mankyeong River. The concentration of total nitrogen was high in Jeonju and Sam stream, while that of total nitrogen showed the highest peak in Winter. Concentrations of $NH_4-N$ was $0.01{\sim}0.06\;mg/L$ in Gosan and Soyang stream. The water quality of upstream along with Mankyeong River was suitable for the irrigation source. The riparian vegetation was investigated by Zurich-Montpellier school's method from June, 2001 to September, 2002. The number of riparian plants were 59 families, 129 genera, 165 species, 20 varieties in Gosancheon, on the while 53 families, 111 genera, 141 species, 19 varieties in Soyangcheon. The number of riparian plants in Bari basin was higher than that of other sites namely, 73 families, 134 genera, 218 species, 33 varieties. Riparian vegetation was consisted of 12 plant communities. The contents of organic matter, total nitrogen and electrical conductivity had negative relationship with species diversity (Species richness index, Heterogeneity index, Species evenness index Species number). On the while, species diversity had positive relationship with soil pH. Species diversify of the plant communities were affected by topography and disturbance.