• Title/Summary/Keyword: Landsat band analysis

Search Result 86, Processing Time 0.028 seconds

Detection of Red Tide Patches using AVHRR and Landsat TM data (AVHRR과 Landsat TM 자료를 이용한 적조 패취 관측)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Detection of red tides by satellite remote sensing can be done either by detecting enhanced level of chlorophyll pigment or by detecting changes in the spectral composition of pixels. Using chlorophyll concentration, however, is not effective currently due to the facts: 1) Chlorophyll-a is a universal pigment of phytoplankton, and 2) no accurate algorithm for chlorophyll in case 2 water is available yet. Here, red band algorithm, classification and PCA (Principal Component Analysis) techniques were applied for detecting patches of Cochlodinium polykrikoides red tides which occurred in Korean waters in 1995. This dinoflagellate species appears dark red due to the characteristic pigments absorbing lights in the blue and green wavelength most effectively. In the satellite image, the brightness of red tide pixels in all the three visible bands were low making the detection difficult. Red band algorithm is not good for detecting the red tide because of reflectance of suspended sediments. For supervised classification, selecting training area was difficult, while unsupervised classification was not effective in delineating the patches from surrounding pixels. On the other hand, PCA gave a good qualitative discrimination on the distribution compared with actual observation.

  • PDF

Reflectance of Geological Media by Using a Field spectrometer in the Ungsang Area, Kyungsang Basin

  • Kang, Kyung-Kuk;Song, Kyo-Young;Ahn, Chung-Hyun;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.2
    • /
    • pp.165-181
    • /
    • 2001
  • Using a field spectrometer having a spectral range of 0.4$\mu\textrm{m}$~2.5$\mu\textrm{m}$ with a spectral resolution of 1nm, the researchers measured the reflectance of granite, andesitic rocks, sedimentary rocks, and pyrophyllite ore in the Ungsang area, Kyungsang Basin, South Korea. Spectral characteristics of the geological media were investigated from the analysis. The in-situ measured sites were selected in well exposed rock outcrops. In case of unfavorable weather conditions, rocks were sampled and remeasured under natural solar condition. The reflectance of field data was measurd at three sistes for granite, six sites for andesitic rock three sites for sedimentary rocks, and two sites for pyrophyllite ore. The vibrational absorption bands for pyrophyllite are detected in the spectral range of 2.0$\mu\textrm{m}$~2.5$\mu\textrm{m}$. The absorption band for granites in study area is not distinctive. The reflectance measured under normal field conditions showed strong absorption at wavelengths of 1.4$\mu\textrm{m}$ and 1.9$\mu\textrm{m}$ due to the effect of moisture in the atmosphere. After the bands of 1.4$\mu\textrm{m}$ and 1.9$\mu\textrm{m}$ were removed, Hull Quotient method was applied to characterize absorption bands. The reflectances of field data were calculated to estimate the band ratio corresponding to the Landsat TM and EOS Terra ASTER. The researchers suggest here that the TM band2, band3, band4, and band7 or ASTER band2, band3, band4, and band9 are the best combination for discriminating outcrops. The researchers tested and demonstrated using a Landsat TM image in the study area. For geologic applications, decorrelation stretch is also an effective tool to enhance the exposed rock mass in images.

Availability of Normalized Spectra of Landsat/TM Data by Their Band Sum

  • Ono, Akiko;Kajiwara, Koji;Honda, Yoshiaki;Ono, Atsuo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.573-575
    • /
    • 2003
  • In satellite spectra, Though the magnitude varies with intensity of sunstroke, dip angle of land so on, the shape is less deformed with these effects. from this point of view, we have developed a spectral shape-dependent analysis utilizing a normalization procedure by the spectral integral and applied it to Landsat/TM spectra. Inevitable topographic and atmospheric effects can be suppressed. The correction algorithm is very simple and timesaving and the suppression of topographic effects is especially effective. Normalized band 4 is almost linear to NDVI values, and is available to the vegetation index.

  • PDF

Sea Surface Temperature Analysis for the Areas near Gwang-Yang Steel Mill using LANDSAT Thermal Data (Landsat 열적외선 위성자료를 이용한 광양제철소 주변 해역 해수표면온도 분석)

  • Kim, Sang-Min;Kim, Chang-Jae;Han, Soo-Hee;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.123-131
    • /
    • 2011
  • Characteristics of sea surface temperature(SST) difference around Gwang-Yang steel Mill where can affect marine ecosystem in Gwang-Yang bay using 25 collected Landsat-7 ETM+ thermal infrared band data from 2000 to 2010. To analyze accuracy of SST from the Landsat-7 ETM+ thermal infrared image, satellite-induced SST was verfied by compared Yeo-Su tide station and Landsat thermal image. As a result, SST from Landsat-7 ETM+ is $1.22^{\circ}C$ lower than sea temperature from Yeo-Su tide station and correlation coefficient resulted in above 0.991 which means that correlation coefficient between Landsat image temperature and field sea temperature is relatively high. Five regions were selected to analyze sea surface temperature between near Gwang-Yang steel mill and the open sea and analyzed timeseries of sea surface temperature seasonally and regionally. Moreover, the additional analysis has been carried out by comparing the averaged temperatures of Gwang-Yang and Soon-Cheon bays using the dataset over a year.

Analysis of Thermal Heat Island Potential by Urbanization Using Landsat-8 Time-series Satellite Imagery (Landsat-8 시계열 위성영상을 활용한 도심지 확장에 따른 열섬포텐셜 분석)

  • Kim, Taeheon;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.305-316
    • /
    • 2018
  • As the urbanization ratio increases, the heat environment in cities is becoming more important due to the urban heat island. In this study, the heat island spatial analysis was calculated and conducted for analysis of urban thermal environment of Sejong city, which was launched in 2012 and has been developed rapidly. To analyze the ratio and change rate of urban area, a multi temporal land cover map (2013 to 2015 and 2017) of study area is generated based on Landsat-8 OLI/TIRS (Operational Land Imager / Thermal Infrared Sensor) satellite imagery. Then, we select an TIR (Thermal Infrared) band from the two TIR bands provided by the Landsat-8, which is used for calculating the heat island potential, through the accuracy evaluation of the brightness temperature and AWS (Automatic Weathering Station) data. Based on the selected band and surface emissivity, land surface temperature is calculated and the estimated heat island potential change is analyzed. As a result, the land surface temperature of the high ratio and change rate of urban area was significantly higher than the surrounding area around $3^{\circ}C$ to $4^{\circ}C$, and the heat island potential was also higher around $4^{\circ}C$ to $5^{\circ}C$. However, the heat island phenomenon was alleviated in urban areas with high rate of change that also show high green area ratio. Therefore, we demonstrated that dense urban area increases the possibility of inducing heat island, but it can mitigate the heat island through green areas.

Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image

  • Chun, Jung Hwa;Lim, Jong-Hwan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.591-601
    • /
    • 2007
  • Spatial information on forest biomass is an important factor to evaluate the capability of forest as a carbon sequestrator and is a core independent variable required to drive models which describe ecological processes such as carbon budget, hydrological budget, and energy flow. The objective of this study is to understand the relationship between satellite image and field data, and to quantitatively estimate and map the spatial distribution of forest biomass. Landsat Enhanced Thematic Mapper (ETM+) derived vegetation indices and field survey data were applied to estimate the biomass distribution of mountainous forest located in Gwangneung Experimental Forest (230 ha). Field survey data collected from the ground plots were used as the dependent variable, forest biomass, while satellite image reflectance data (Band 1~5 and Band 7), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and RVI (Ratio Vegetation Index) were used as the independent variables. The mean and total biomass of Gwangneung catchment area were estimated to be about 229.5 ton/ha and $52.8{\times}10^3$ tons respectively. Regression analysis revealed significant relationships between the measured biomass and Landsat derived variables in both of deciduous forest ($R^2=0.76$, P < 0.05) and coniferous forest ($R^2=0.75$, P < 0.05). However, there still exist many uncertainties in the estimation of forest ecosystem parameters based on vegetation remote sensing. Developing remote sensing techniques with adequate filed survey data over a long period are expected to increase the estimation accuracy of spatial information of the forest ecosystem.

Environmental Change Analysis of Kwangju City using Landsat TM Data (Landsat TM 자료를 이용한 광주시 환경변화 분석)

  • Park, Byung-Uk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.1 s.6
    • /
    • pp.31-41
    • /
    • 1996
  • The analysis of environmental change followed by cultural development is useful for determining development plan hereafter. This study aimed for quantitative analysis about urban sprawl within 10 years, from 1984 to 1994, at Kwangju city, and to extract characteristics of change. For this purpose, we performed land cover classifications using Landsat TM data. And to evaluate influence of urbanization, we carried out surface temperature analysis using TM band 6 data. From the change analysis in land cover, it wa found that expansion of urban areas amounted to 3% and get accomplished by exploitation of farm land area, and that a rice paddy fields were changed to vinyl house areas considerably. In the regional aspect, development was concentrated on Kwangsan-ku which had been incorperated into Kwangju city in 1988. The results from temperature analysis showed that there was close correlation between surface temperature and land cover types, and that urbanization would influnce temperature to rise $0.3^{\circ}C$ in summer. As a results, we can prove that satellite data is very effective for environmental change analysis.

  • PDF

Change Vector Analysis : Change detection of flood area using LANDSAT TM Data (LANDSAT TM을 이용한 홍수지역의 변화탐지 : Change Vector Analysis 방법을 중심으로)

  • Yoon, Geun-Won;Yun, Young-Bo;Park, Jong-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.47-52
    • /
    • 2003
  • Change detection and analysis is a powerful application of remote sensing, in that the spectral resolution of multi-band sensors can be used to advantage in monitoring both significant and subtle land cover changes over time. In this study, the LANDSAT TM data was used to detect the change areas affected by flood from a heavy rainfall. The study area is the Nakdong River located in the Korea peninsular. Among the several change detection techniques, change vector analysis(CVA), principle component analysis(PCA) and image difference approach are utilized in this paper. CVA uses any number of spectral bands from multi-date satellite data to produce change image that yield information of the magnitude and direction of differences pixel values. And accuracy assessment was carried out with a change image produced from three techniques. In result, CVA was found to be the most accurate for detecting areas affected by flood. CVA with the overall accuracy and Kappa coefficient of 97.27 percent and 94.45 percent, respectively.

  • PDF

The Analysis Errors of Surface Water Temperature Using Landsat TM (Landsat TM을 이용한 표층수온 분석 오차)

  • 정종철;유신재
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • The estimation technique of surface water temperature by satellite remote sensing has been applied to ocean and large lakes using AVHRR. However, the spatial resolution AVHBR is not abquate for coastal region and small lakes. Landsat 5 TM has 120 m spatial resolution, which suits better. We carried out analysis of surface water temperature in Lake Sihwa and near coastal area using Landsat 5 TM. To relate digital number to the brightness temperature, we applied Empirical, NASA, RESTEC, Quadratic methods. Comparing calculated and observed value, we obtained as follows; NASA method, $R^2=0.9343$, RMSE(Root Mean Square Error)=3.5876$^{\circ}C$; RESTEC method, $R^2=0.8937$, RMSE=3.76$^{\circ}C$; Quadratic method, $R^2=0.8967$, RMSE=2.949$^{\circ}C$. Because Landsat TM has only one band for extracting surface temperature, it was difficult to correct for the atmospheric errors. For improving the accuracy of surface temperature detection using Landsat TM, there is a need for a method to decrease the effect of atmospheric contents.

Three Dimensional Analysis Using Digital Elevation Model on the Coastal Landform of the Sacheon Bay, South Sea of Korea (수치고도 모델을 이용한 사천만 해안지역의 3차원 지형분석)

  • Lee, Min-Boo;Kim, Nam-Shin;Han, Kyun-Hyeung
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.2
    • /
    • pp.203-216
    • /
    • 2003
  • The process of constructing coastal digital elevation model(DEM), for the 3 dimensional analysis, is composed by abstracting land layers for land elevation and water depth, reprojecting UTM, relocating geographical grid, and interpolating works. The geomorphic set of shallow sea, including tidal current, tidal zone deposition, and water depth distribution, was analyzed by eye search of Landsat TM image, masking of land zone, band combination and regression analysis. Some horizontal differences, between combined DEM and surveyed data of shallow sea, was corrected for analysis. Analyzed geomorphic elements are stream channel, alluvial fan, coastal terrace, tidal current. and shallow sea bank. Results of analysis present that transported fluvial materials influence tidal sedimentation, especially from Gahwacheon river, for the role of artificial draining flooding waters from Jinyang Reservoir, almost in the summer season. In the coastal area with less tidal current, more fine materials are deposited. The influence of currental deposition are higher on small pockets with west coast of well developed terraces. The lower skirt of alluvial fans developed into the tidal zone of shallow sea. Small pocket type bays are closed by coastal current, and less influenced from tidal deposition. The bank of Jinju Bay are developed originally from submerging of remnant erosional mountain ranges, and play on the role of trapping fine materials.

  • PDF