• Title/Summary/Keyword: Landsat Image

Search Result 498, Processing Time 0.023 seconds

Land Use Classification in the Seoul Metropolitan Region - An Application of Remote Sensing - (인공위성 영상자료를 이용한 수도권 토지이용 실태분석)

  • 김영표;김순희
    • Spatial Information Research
    • /
    • v.2 no.2
    • /
    • pp.135-145
    • /
    • 1994
  • The primary purpose of this study is, using Landsat remote sensing data and a image processing software, ERDAS, to generate real data and image photographs on physical land use of the Seoul metropolitan region. The remote sensing data used in this study are Landsat MSS data (August 28, 1979) and TM data (May 31, 1991) which cover the Seoul metropolitan region of Korea. The spatial resolutions of MSS data and TM data are 57m X 79m and 30m X 30m respectively. In addition, this study aims at contrasting urbanization phases of the Seoul metropolitan region in 1979 with those in 1991, by making image photographs and statistics on physical land use. Summing up the major results, built-up area ratio within the Seoul city had been expanded from 41.9% in 1979 to 64.5% in 1991 and that within the radius of 40km of Seoul city hall had been expanded from 10.5% In 1979 to 19.8% in 1991. The data and technique developed in this study could serve as a useful tool in making various kinds of spatial plannings, that is, urban and regional planning, selection of optimal new town location, evaluation of public facilities location alternatives, etc..

  • PDF

Survey for Farmland Development in Western Coast of North Korea Using Satellite Image Data (인공위성 화상데이터를 이용한 북한 서해안지역의 농지기반조성 현황조사)

  • 안기원;조병진;서두천;이정철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.1
    • /
    • pp.95-106
    • /
    • 2001
  • The aim of this study was to find out and confirm the project formulation, feasibility, scale and locations on the farmland development projects such as planned and ongoing tideland reclamation and irrigation facilities along the western coast of North Korea using satellite image data, Landsat TM, JERS OPS and SPOT PAN and aged maps. In order to apply to the study, remote sensing technologies such as geometric correction. digital mosaicking, image merging, linear extraction and land cover classification were studied. As the results of the study, the reclaimable tidal flats are recognized at about 178, 000 ha equivalent to 59% of announced 300, 000ha. and 16, 000 ha of completed, 17, 000 ha of ongoing project areas although 27, 000 ha were revealed to be completed during 1987-1993. Almost planned projects are appeared to be shortage of water supply due to their small watersheds, however, most projects are connected with 2000 mile canal system.

  • PDF

A Study on the Rainfall-Runoff Analysis of Using Satellite Image (위성영상정보를 이용한 강우유출 해석에 관한 연구)

  • Park, Young-Kee;Lee, Jeung-Seok;Park, Jeong-Gyu
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.115-124
    • /
    • 2010
  • Urban watershed can be found in the visible changes in technology, the most realistic satellite images is to use the data. Satellite image data on the indicators for progress on the nature of the change of land use is consistent and repetitive information, regular observation makes possible the detailed analysis of space-time. These remote sensing techniques and the type of course and, by using the time series history, the past, the dynamic model and the randomized prediction methodology for the conversion process if the city and river basin cooperation of the space changes effectively will be able to extrapolate. For each of the main changes in river flow, depending on the area of urbanization as determined according to reproduce the duration of the relationship between the urbanization of the area and runoff can be represented as a linear polynomial expression was, if a linear expression in the two fast slew rate of 0.858 to 0.861 showed up, and fast slew rate of 0.934 to 0.974 for the polynomial are reported. Change of land use changes in the watershed of the flow is one of the most affecting elements. Therefore, changes in land use of the correct classification of rivers is a more accurate calculation of the amount of the floodgate. In particular, using the Landsat images through the image of the land use category, land use past data and calculated using the Markov Chain model and predict the future land use plan in the water control project will be used for large likely.

Pattern Classification of Multi-Spectral Satellite Images based on Fusion of Fuzzy Algorithms (퍼지 알고리즘의 융합에 의한 다중분광 영상의 패턴분류)

  • Jeon, Young-Joon;Kim, Jin-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.674-682
    • /
    • 2005
  • This paper proposes classification of multi-spectral satellite image based on fusion of fuzzy G-K (Gustafson-Kessel) algorithm and PCM algorithm. The suggested algorithm establishes the initial cluster centers by selecting training data from each category, and then executes the fuzzy G-K algorithm. PCM algorithm perform using classification result of the fuzzy G-K algorithm. The classification categories are allocated to the corresponding category when the results of classification by fuzzy G-K algorithm and PCM algorithm belong to the same category. If the classification result of two algorithms belongs to the different category, the pixels are allocated by Bayesian maximum likelihood algorithm. Bayesian maximum likelihood algorithm uses the data from the interior of the average intracluster distance. The information of the pixels within the average intracluster distance has a positive normal distribution. It improves classification result by giving a positive effect in Bayesian maximum likelihood algorithm. The proposed method is applied to IKONOS and Landsat TM remote sensing satellite image for the test. As a result, the overall accuracy showed a better outcome than individual Fuzzy G-K algorithm and PCM algorithm or the conventional maximum likelihood classification algorithm.

Aerosol Optical Thickness Retrieval Using a Small Satellite

  • Wong, Man Sing;Lee, Kwon-Ho;Nichol, Janet;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.605-615
    • /
    • 2010
  • This study demonstrates the feasibility of small satellite, namely PROBA platform with the compact high resolution imaging spectrometer (CHRIS), for aerosol retrieval in Hong Kong. The rationale of our technique is to estimate the aerosol reflectances by decomposing the Top of Atmosphere (TOA) reflectances from surface reflectance and Rayleigh path reflectances. For the determination of surface reflectances, the modified Minimum Reflectance Technique (MRT) is used on three winter ortho-rectified CHRIS images: Dec-18-2005, Feb-07-2006, Nov-09-2006. For validation purpose, MRT image was compared with ground based multispectral radiometer measurements and atmospherically corrected Landsat image. Results show good agreements between CHRIS-derived surface reflectance and both by ground measurement data as well as by Landsat image (r>0.84). The Root-Mean-Square Errors (RMSE) at 485, 551 and 660nm are 0.99%, 1.19%, and 1.53%, respectively. For aerosol retrieval, Look Up Tables (LUT) which are aerosol reflectances as a function of various AOT values were calculated by SBDART code with AERONET inversion products. The CHRIS derived Aerosol Optical Thickness (AOT) images were then validated with AERONET sunphotometer measurements and the differences are 0.05~0.11 (error=10~18%) at 440nm wavelength. The errors are relatively small compared to those from the operational moderate resolution imaging spectroradiometer (MODIS) Deep Blue algorithm (within 30%) and MODIS ocean algorithm (within 20%).

Accuracy Comparison of TOA and TOC Reflectance Products of KOMPSAT-3, WorldView-2 and Pléiades-1A Image Sets Using RadCalNet BTCN and BSCN Data

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.21-32
    • /
    • 2022
  • The importance of the classical theme of how the Top-of-Atmosphere (TOA) and Top-of-Canopy (TOC) reflectance of high-resolution satellite images match the actual atmospheric reflectance and surface reflectance has been emphasized. Based on the Radiometric Calibration Network (RadCalNet) BTCN and BSCN data, this study compared the accuracy of TOA and TOC reflectance products of the currently available optical satellites, including KOMPSAT-3, WorldView-2, and Pléiades-1A image sets calculated using the absolute atmospheric correction function of the Orfeo Toolbox (OTB) tool. The comparison experiment used data in 2018 and 2019, and the Landsat-8 image sets from the same period were applied together. The experiment results showed that the product of TOA and TOC reflectance obtained from the three sets of images were highly consistent with RadCalNet data. It implies that any imagery may be applied when high-resolution reflectance products are required for a certain application. Meanwhile, the processed results of the OTB tool and those by the Apparent Reflection method of another tool for WorldView-2 images were nearly identical. However, in some cases, the reflectance products of Landsat-8 images provided by USGS sometimes showed relatively low consistency than those computed by the OTB tool, with the reference of RadCalNet BTCN and BSCN data. Continuous experiments on active vegetation areas in addition to the RadCalNet sites are necessary to obtain generalized results.

Quantitative Analysis of the Look Direction Bias in SAR Image for Geological Lineament Study (지질학적 선구조 분석을 위한 SAR 영상에서의 방향편차에 대한 정량적 분석)

  • 홍창기;원중선;민경덕
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • SAR imagery usually reveals the influence of antenna look-direction on the delineation of geological structures. In this study, the look-direction bias in SAR image is quantitatively analyzed specifically for geological lineament study. Geologic lineaments are estimated using both Landsat TM and JERS-1 SAR images over the study area to quantitatively compare and analyze the look-direction bias in the SAR image. The standard geologic lineaments in the study area are established from lineaments estimated from TM images, field mapping, and fault lines in a published geologic map. The results show that lineaments normal to radar look-direction are extremely well enhanced while those parallel to look-direction are less visible as expected. However, certain lineaments even parallel to radar look-direction can still be detectable in a favorable topographic condition. Compared with TM image, the total number of detected lineaments in each direction in the SAR image increases or decreases ranging from 33% to 159% in length and from 28% to 187% in occurrence. The ratio of lineaments in SAR image to those in TM image with respect to direction can be fitted by a cosine function. The fitted function indicates that geological lineament is more easily detected in SAR image than in TM image within about $\pm$50$^{\circ}$ normal to radar look-direction. And lineaments with limited extension appear to be more sensitive to the look direction bias effect.

Analysis on the Snow Cover Variations at Mt. Kilimanjaro Using Landsat Satellite Images (Landsat 위성영상을 이용한 킬리만자로 만년설 변화 분석)

  • Park, Sung-Hwan;Lee, Moung-Jin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.409-420
    • /
    • 2012
  • Since the Industrial Revolution, CO2 levels have been increasing with climate change. In this study, Analyze time-series changes in snow cover quantitatively and predict the vanishing point of snow cover statistically using remote sensing. The study area is Mt. Kilimanjaro, Tanzania. 23 image data of Landsat-5 TM and Landsat-7 ETM+, spanning the 27 years from June 1984 to July 2011, were acquired. For this study, first, atmospheric correction was performed on each image using the COST atmospheric correction model. Second, the snow cover area was extracted using the NDSI (Normalized Difference Snow Index) algorithm. Third, the minimum height of snow cover was determined using SRTM DEM. Finally, the vanishing point of snow cover was predicted using the trend line of a linear function. Analysis was divided using a total of 23 images and 17 images during the dry season. Results show that snow cover area decreased by approximately $6.47km^2$ from $9.01km^2$ to $2.54km^2$, equivalent to a 73% reduction. The minimum height of snow cover increased by approximately 290 m, from 4,603 m to 4,893 m. Using the trend line result shows that the snow cover area decreased by approximately $0.342km^2$ in the dry season and $0.421km^2$ overall each year. In contrast, the annual increase in the minimum height of snow cover was approximately 9.848 m in the dry season and 11.251 m overall. Based on this analysis of vanishing point, there will be no snow cover 2020 at 95% confidence interval. This study can be used to monitor global climate change by providing the change in snow cover area and reference data when studying this area or similar areas in future research.

Land Use Classification of TM Imagery in Hilly Areas: Integration of Image Processing and Expert Knowledge

  • Ding, Feng;Chen, Wenhui;Zheng, Daxian
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1329-1331
    • /
    • 2003
  • Improvement of the classification accuracy is one of the major concerns in the field of remote sensing application research in recent years. Previous research shows that the accuracy of the conventional classification methods based only on the original spectral information were usually unsatisfied and need to be refined by manual edit. This present paper describes a method of combining the image processing, ancillary data (such as digital elevation model) and expert knowledge (especially the knowledge of local professionals) to improve the efficiency and accuracy of the satellite image classification in hilly land. Firstly, the Landsat TM data were geo-referenced. Secondly, the individual bands of the image were intensitynormalized and the normalized difference vegetation index (NDVI) image was also generated. Thirdly, a set of sample pixels (collected from field survey) were utilized to discover their corresponding DN (digital number) ranges in the NDVI image, and to explore the relationships between land use type and its corresponding spectral features . Then, using the knowledge discovered from previous steps as well as knowledge from local professionals, with the support of GIS technology and the ancillary data, a set of conditional statements were applied to perform the TM imagery classification. The results showed that the integration of image processing and spatial analysis functions in GIS improved the overall classification result if compared with the conventional methods.

  • PDF

Unsupervised Multispectral Image Segmentation Based on 1D Combined Neighborhood Differences (1D 통합된 근접차이에 기반한 자율적인 다중분광 영상 분할)

  • Saipullah, Khairul Muzzammil;Yun, Byung-Choon;Kim, Deok-Hwan
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.625-628
    • /
    • 2010
  • This paper proposes a novel feature extraction method for unsupervised multispectral image segmentation based in one dimensional combined neighborhood differences (1D CND). In contrast with the original CND, which is applied with traditional image, 1D CND is computed on a single pixel with various bands. The proposed algorithm utilizes the sign of differences between bands of the pixel. The difference values are thresholded to form a binary codeword. A binomial factor is assigned to these codeword to form another unique value. These values are then grouped to construct the 1D CND feature image where is used in the unsupervised image segmentation. Various experiments using two LANDSAT multispectral images have been performed to evaluate the segmentation and classification accuracy of the proposed method. The result shows that 1D CND feature outperforms the spectral feature, with average classification accuracy of 87.55% whereas that of spectral feature is 55.81%.