• Title/Summary/Keyword: Landsat $ETM_+$

Search Result 221, Processing Time 0.023 seconds

A Machine learning Approach for Knowledge Base Construction Incorporating GIS Data for land Cover Classification of Landsat ETM+ Image (지식 기반 시스템에서 GIS 자료를 활용하기 위한 기계 학습 기법에 관한 연구 - Landsat ETM+ 영상의 토지 피복 분류를 사례로)

  • Kim, Hwa-Hwan;Ku, Cha-Yang
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.5
    • /
    • pp.761-774
    • /
    • 2008
  • Integration of GIS data and human expert knowledge into digital image processing has long been acknowledged as a necessity to improve remote sensing image analysis. We propose inductive machine learning algorithm for GIS data integration and rule-based classification method for land cover classification. Proposed method is tested with a land cover classification of a Landsat ETM+ multispectral image and GIS data layers including elevation, aspect, slope, distance to water bodies, distance to road network, and population density. Decision trees and production rules for land cover classification are generated by C5.0 inductive machine learning algorithm with 350 stratified random point samples. Production rules are used for land cover classification integrated with unsupervised ISODATA classification. Result shows that GIS data layers such as elevation, distance to water bodies and population density can be effectively integrated for rule-based image classification. Intuitive production rules generated by inductive machine learning are easy to understand. Proposed method demonstrates how various GIS data layers can be integrated with remotely sensed imagery in a framework of knowledge base construction to improve land cover classification.

Relationship Analysis between Topographic Factors and Land Surface Temperature from Landsat 7 ETM+ Imagery (Landsat 7 ETM+ 영상에서 얻은 지표온도와 지형인자의 상관성 분석)

  • Lee, Jin-Duk;Bhang, Kon Joon;Han, Seung Hee
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.482-491
    • /
    • 2012
  • Because the satellite imagery can detect the radiative heat from the surface using the thermal IR (TIR) channel, there have been many efforts to verify the relationship between the land surface temperature (LST) and urban heat island. However, the relationship between geomorphological characteristics like surface aspects and LST is relatively less studied. Therefore, the geomorphological elements, for example, surface aspects and surface slopes, are considered to evaluate their effects on the change of the surface temperature distribution using the Landsat 7 ETM+ TIR channel and the possibility of the image to detect anthropogenic heat from the surface. We found that the surface aspect is ignorable but the surface slope with the sun elevation influences on the surface temperature distribution. Also, the radiative heat from the surface to the atmosphere could not be accurately recorded by the satellite image due to the surface slope but the slope correction process used in this study could correct the surface temperature under slope condition and the slope correction, in fact, was not influenced on the average temperature of the surface. The possibility of the anthropogenic heat detection from the surface from the satellite imagery was verified as well.

A Study of Drought Susceptibility on Cropland Using Landsat ETM+ Imagery (Landsat ETM+ 영상을 활용한 경작지역내 가뭄민감도의 연구)

  • 박은주;성정창;황철수
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.107-115
    • /
    • 2003
  • This research investigated the 2001 spring drought on croplands in South Korea using satellite imagery. South Korea has suffered from spring droughts almost every year. Meteorological indices have been used for monitoring droughts, however they don't tell the local severity of drought. Therefore, this research aimed at detecting the local, spatial pattern of drought severity at a cropland level. This research analyzed the agricultural drought using the wetness of remotely sensed pixels that affects the growth of early crops significantly in the spring. This research, specifically, analyzed the spatial distribution and severity of drought using the tasseled cap transformation and topographical factors. The wetness index from the tasseled cap transformation of Landsat 7 ETM/sub +/ imagery was very useful for detecting the 2001 spring drought susceptibility in agricultural croplands. Especially, the wetness values smaller than -0.2 were identified as the croplands that were suffering from serious water deficit. Using the water deficit pixels, drought severity was modeled finally.

Impervious Surface Estimation of Jungnangcheon Basin Using Satellite Remote Sensing and Classification and Regression Tree (위성원격탐사와 분류 및 회귀트리를 이용한 중랑천 유역의 불투수층 추정)

  • Kim, Sooyoung;Heo, Jun-Haeng;Heo, Joon;Kim, SungHoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.915-922
    • /
    • 2008
  • Impervious surface is an important index for the estimation of urbanization and the assessment of environmental change. In addition, impervious surface influences on short-term rainfall-runoff model during rainy season in hydrology. Recently, the necessity of impervious surface estimation is increased because the effect of impervious surface is increased by rapid urbanization. In this study, impervious surface estimation is performed by using remote sensing image such as Landsat-7 ETM+image with $30m{\times}30m$ spatial resolution and satellite image with $1m{\times}1m$ spatial resolution based on Jungnangcheon basin. A tasseled cap transformation and NDVI(normalized difference vegetation index) transformation are applied to Landsat-7 ETM+ image to collect various predict variables. Moreover, the training data sets are collected by overlaying between Landsat-7 ETM+ image and satellite image, and CART(classification and regression tree) is applied to the training data sets. As a result, impervious surface prediction model is consisted and the impervious surface map is generated for Jungnangcheon basin.

Application of Landsat ETM Image Indices to Classify the Wildfire Area of Gangneung, Gangweon Province, Korea (강원도 강릉시 일대 산불지역 분류를 위한 Landsat ETM 영상 분류지수의 활용)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Chung, Gong-Soo;Lee, Jin-Young
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.754-763
    • /
    • 2004
  • This study was aimed to examine the Landsat Enhanced Thematic Mapper Plus (ETM+) index, which matches well with the field survey data in the wildfire area of Gangneung, Gangweon Province, Korea. In the wildfire area NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), and Tasseled Cap Transformation Index (Brightness, Wetness, Greenness) were compared with field survey data. NDVI and SAVI were very useful in detecting the difference between the wildfire and non-wildfire area, but not so in classify the soil types in the wildfire area. The soil plane based on the Tasseled Cap Transformation showed a better result in classifying the soil types in the wildfire areas than NDVI and SAVI, and corresponded well with field survey data. Using a linear function based on greenness and wetness in the Tasseled Cap Transformation is expected to provide a more efficient and quicker method to classify wildfire areas.

The Land Surface Temperature Distributions of Jeju Island using Landsat 7/ETM+ Data

  • Lee Byung-Gul
    • Journal of the Korean earth science society
    • /
    • v.26 no.2
    • /
    • pp.109-113
    • /
    • 2005
  • In this study, the estimation of the temperature distribution of Jeju Island with coastal ocean derived from the thermal band of Landsat 7/ETM+ of January 6, 2003 was carried out. For the computation of the temperature of the island and the coastal ocean based on the thermal band, we used NASA method wiich is the 8 bit Digital Number(DN) converted into spectral radiance. The computed results showed that the land temperature variations were from 0 to 12 Celsius degrees, and a good agreement with the observation ones based on the method. However, the ocean surface temperature was not much changed ground 15 degree since the water was well mixed between the coastal and the offshore ocean. The interesting results were that the temperature distributions of the southern part(Seogwipo City) of Jeju Island were higher than those of the north one(Jeju City) by more than 2 Celsius degree at the same height although the distance between the Jeju and the Seogwipo is only about 35km in winter season. The reason was found that the solar irradiance intensity of the south part was stronger than the north one by Halla mountain in winter season only. From the results, we found that the seasonal variations of solar irradiation and the height of Mt. Halla were an important role of temperature distribution of Jeju Island.

ANALYSIS OF THE CHARACTERISTICS ABOUT GYEONG-GANG FAULT ZONE THROUGH REMOTE SENSING TECHNIQUES

  • Hwang, Jin-Kyong;Choi, Jong-Kuk;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.196-199
    • /
    • 2008
  • Lineament is defined generally as a linear feature or pattern on interpretation of a satellite image and indicates the geological structures such as faults and fractures. For this reason, a lineament extraction and analysis using remote sensing images have been widely used for mapping large areas. The Gyeong-gang Fault is a NNE trending structure located in Gangwon-do and Kyeonggi-do district. However, a few geological researches on that fault have been carried out and its trace or continuity is ambiguous. In this study, we investigate the geologic features at Gyeong-gang Fault Zone using LANDSAT ETM+ satellite image and SRTM digital elevation model. In order to extract the characteristics of geologic features effectively, we transform the LANDSAT ETM+ image using Principal Component Analysis (PCA) and create a shade relief from SRTM data with various illumination angles. The results show that it is possible to identify the dimensions and orientations of the geologic features at Gyeong-gang Fault Zone using remote sensing data. An aerial photograph interpretation and a field work will be future tasks for more accurate analysis in this area.

  • PDF

Spatial Distribution Mapping of Cyanobacteria in Daecheong Reservoir Using the Satellite Imagery (위성영상을 이용한 대청호 남조류의 공간 분포 맵핑)

  • Back, Shin Cheol;Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.53-63
    • /
    • 2016
  • Monitoring of cyanobacteria bloom in reservoir systems is important for water managers responsible of water supply system. Cyanobacteria affect the taste and smell of water and pose considerable filtration problems at water use places. Harmful cyanobacteria bloom in reservoir have significant economic impacts. We develop a new method for estimating the cyanobacteria bloom using Landsat TM and ETM+ data. Developed model was calibrated and cross-validated with existing in situ measurements from Daecheong Reservoir's Water Quality Monitoring Program and Algae Alarm System. Measurements data of three stations taken from 2004 to 2012 were matched with radiometrically converted reflectance data from the Landsat TM and ETM+ sensor. Stepwise multiple linear regression was used to select wavelengths in the Landsat TM and ETM+ bands 1, 2 and 4 that were most significant for predicting cyanobacteria cell number and bio-volume. Based on statistical analysis, the linear models were that included visible band ratios slightly outperformed single band models. The final monitoring models captured the extents of cyanobacteria blooms throughout the 2004-2012 study period. The results serve as an added broad area monitoring tool for water resource managers and present new insight into the initiation and propagation of cyanobacteria blooms in Daecheong reservoir.

Burned Area Detection After Wildfire Using Landsat 7 ETM+ SLC-off Images

  • Quoc, Khanh Le;Sy, Tan Nguyen;Nhat, Thanh Nguyen Thi;Thanh, Ha Le
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.117-129
    • /
    • 2013
  • The increasing demand for monitoring wildfires and their impact on the land surface have prompted studies of burned area extraction and analysis. To differentiate burned and unburned area, the earlier method of the Moderate Resolution Imaging Spectro-radiometer (MODIS) Burned Area Detection Algorithm was proposed to estimate the change in land surface based on the reflectance energy. The energy, whose wavelengths are sensitive to burning, was selected to calculate the change parameter $Z_{score}$. This method was applied using the MODIS images to produce a MODIS Burned Area product. The approach was to simplify this algorithm to make it compatible with the Landsat 7 ETM+ SLC-off images. To extract the refined version of burned regions, post-processing was carried out by applying a median filter, dilation morphology algorithm, and finally a gap filling method. The experimental results showed that the detailed burned areas extracted from the proposed method exhibited more spatial details than those of the MODIS Burned products in the large U.S areas. The results also revealed the discontinuous distribution of burned regions in Vietnam forests.

  • PDF

A Statistic Correlation Analysis Algorithm Between Land Surface Temperature and Vegetation Index

  • Kim, Hyung-Moo;Kim, Beob-Kyun;You, Kang-Soo
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.102-106
    • /
    • 2005
  • As long as the effective contributions of satellite images in the continuous monitoring of the wide area and long range of time period, Landsat TM and Landsat ETM+ satellite images are surveyed. After quantization and classification of the deviations between TM and ETM+ images based on approved thresholds such as gains and biases or offsets, a correlation analysis method for the compared calibration is suggested in this paper. Four time points of raster data for 15 years of the highest group of land surface temperature and the lowest group of vegetation of the Kunsan city Chollabuk_do Korea located beneath the Yellow sea coast, are observed and analyzed their correlations for the change detection of urban land cover. This experiment based on proposed algorithm detected strong and proportional correlation relationship between the highest group of land surface temperature and the lowest group of vegetation index which exceeded R=(+)0.9478, so the proposed Correlation Analysis Model between the highest group of land surface temperature and the lowest group of vegetation index will be able to give proof an effective suitability to the land cover change detection and monitoring.