• Title/Summary/Keyword: Landmark Recognition

Search Result 66, Processing Time 0.026 seconds

Edge Line Information based Underwater Landmark for UUV

  • Yu, Son-Cheol;Kang, Dong-Joung;Kim, Jae-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.68-75
    • /
    • 2011
  • This paper addresses an underwater landmark for updating UUV positioning information. A method is proposed in which the landmark's cubic shape and edge are recognized. The reliability, installation load, and management of landmark design were taken into consideration in order to assess practical applications of the landmark. Landmark recognition was based on topological features. The straight line recognition confirmed the landmark's location and enabled an UUV to accurately estimated its underwater position with respect to the landmark. An efficient recognition method is proposed, which provides real-time processing with limited UUV computing power. An underwater experiment was conducted in order to evaluate the proposed method's reliability and accuracy.

Accurate Location Identification by Landmark Recognition

  • Jian, Hou;Tat-Seng, Chua
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.164-169
    • /
    • 2009
  • As one of the most interesting scenes, landmarks constitute a large percentage of the vast amount of scene images available on the web. On the other hand, a specific "landmark" usually has some characteristics that distinguish it from surrounding scenes and other landmarks. These two observations make the task of accurately estimating geographic information from a landmark image necessary and feasible. In this paper, we propose a method to identify landmark location by means of landmark recognition in view of significant viewpoint, illumination and temporal variations. We use GPS-based clustering to form groups for different landmarks in the image dataset. The images in each group rather fully express the possible views of the corresponding landmark. We then use a combination of edge and color histogram to match query to database images. Initial experiments with Zubud database and our collected landmark images show that is feasible.

  • PDF

A Study on FMS Landmark Recognition Using Color Images (칼라 영상을 이용한 FMS Landmark의 인식)

  • Yi, Chang-Hyun;Kwon, Ho-Yeol;Eum, Jin-Seob;Kim, Yong-Yil
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.418-420
    • /
    • 1993
  • In this paper, we proposed a new FMS Landmark recognition algorithm using color images. Firstly, a NTSC image fame is captured, and then it is converted to a field image in order to reduce the image blurring from the AGV motion. Secondly, the landmark is detected via the comparison of the color vectors of image pixels with the landmark color. Finally, the identification of FMS landmark is executed using a newly designed landmark pattern with a set of reference points. The landmark pattern is normalized against its translation, rotation, and scaling. And then, its vertical projection data are fisted for the pattern classification using the standard data set. Experimental results show that our scheme performs well.

  • PDF

Efficient Visual Place Recognition by Adaptive CNN Landmark Matching

  • Chen, Yutian;Gan, Wenyan;Zhu, Yi;Tian, Hui;Wang, Cong;Ma, Wenfeng;Li, Yunbo;Wang, Dong;He, Jixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4084-4104
    • /
    • 2021
  • Visual place recognition (VPR) is a fundamental yet challenging task of mobile robot navigation and localization. The existing VPR methods are usually based on some pairwise similarity of image descriptors, so they are sensitive to visual appearance change and also computationally expensive. This paper proposes a simple yet effective four-step method that achieves adaptive convolutional neural network (CNN) landmark matching for VPR. First, based on the features extracted from existing CNN models, the regions with higher significance scores are selected as landmarks. Then, according to the coordinate positions of potential landmarks, landmark matching is improved by removing mismatched landmark pairs. Finally, considering the significance scores obtained in the first step, robust image retrieval is performed based on adaptive landmark matching, and it gives more weight to the landmark matching pairs with higher significance scores. To verify the efficiency and robustness of the proposed method, evaluations are conducted on standard benchmark datasets. The experimental results indicate that the proposed method reduces the feature representation space of place images by more than 75% with negligible loss in recognition precision. Also, it achieves a fast matching speed in similarity calculation, satisfying the real-time requirement.

Localization of Mobile Robot Using Color Landmark mounted on Ceiling (천장 부착 컬러 표식을 이용한 이동로봇의 자기위치추정)

  • Oh, Jong-Kyu;Lee, Chan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.91-94
    • /
    • 2001
  • In this paper, we proposed localization method of mobile robot using color landmark mounted on ceiling. This work is composed 2 parts : landmark recognition part which finds the position of multiple landmarks in image and identifies them and absolute position estimation part which estimates the location and orientation of mobile robot in indoor environment. In landmark recognition part, mobile robot detects artificial color landmarks using simple histogram intersection method in rg color space which is insensitive to the change of illumination. Then absolute position estimation part calculates relative position of the mobile robot to the detected landmarks. For the verification of proposed algorithm, ceiling-orientated camera was installed on a mobile robot and performance of localization was examined by designed artificial color landmarks. As the result of test, mobile robot could achieve the reliable landmark detection and accurately estimate the position of mobile robot in indoor environment.

  • PDF

Landmark Detection Based on Sensor Fusion for Mobile Robot Navigation in a Varying Environment

  • Jin, Tae-Seok;Kim, Hyun-Sik;Kim, Jong-Wook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.281-286
    • /
    • 2010
  • We propose a space and time based sensor fusion method and a robust landmark detecting algorithm based on sensor fusion for mobile robot navigation. To fully utilize the information from the sensors, first, this paper proposes a new sensor-fusion technique where the data sets for the previous moments are properly transformed and fused into the current data sets to enable an accurate measurement. Exploration of an unknown environment is an important task for the new generation of mobile robots. The mobile robots may navigate by means of a number of monitoring systems such as the sonar-sensing system or the visual-sensing system. The newly proposed, STSF (Space and Time Sensor Fusion) scheme is applied to landmark recognition for mobile robot navigation in an unstructured environment as well as structured environment, and the experimental results demonstrate the performances of the landmark recognition.

Landmark recognition in indoor environments using a neural network (신경회로망을 이용한 실내환경에서의 주행표식인식)

  • 김정호;유범재;오상록;박민용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.306-309
    • /
    • 1996
  • This paper presents a method of landmark recognition in indoor environments using a neural-network for an autonomous mobile robot. In order to adapt to image deformation of a landmark resulted from variations of view-points and distances, a multi-labeled template matching(MLTM) method and a dynamic area search method(DASM) are proposed. The MLTM is. used for matching an image template with deformed real images and the DASM is proposed to detect correct feature points among incorrect feature points. Finally a feed-forward neural-network using back-propagation algorithm is adopted for recognizing the landmark.

  • PDF

Mobile Robot Localization Based on Hexagon Distributed Repeated Color Patches in Large Indoor Area (넓은 실내 공간에서 반복적인 칼라패치의 6각형 배열에 의한 이동로봇의 위치계산)

  • Chen, Hong-Xin;Wang, Shi;Han, Hoo-Sek;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.445-450
    • /
    • 2009
  • This paper presents a new mobile robot localization method for indoor robot navigation. The method uses hexagon distributed color-coded patches on the ceiling and a camera is installed on the robot facing the ceiling to recognize these patches. The proposed "cell-coded map", with the use of only seven different kinds of color-coded landmarks distributed in hexagonal way, helps reduce the complexity of the landmark structure and the error of landmark recognition. This technique is applicable for navigation in an unlimited size of indoor space. The structure of the landmarks and the recognition method are introduced. And 2 rigid rules are also used to ensure the correctness of the recognition. Experimental results prove that the method is useful.

Self-localization of Mobile Robots by the Detection and Recognition of Landmarks (인공표식과 자연표식을 결합한 강인한 자기위치추정)

  • 권인소;장기정;김성호;이왕헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.306-311
    • /
    • 2003
  • This paper presents a novel localization paradigm for mobile robots based on artificial and natural landmarks. A model-based object recognition method detects natural landmarks and conducts the global and topological localization. In addition, a metric localization method using artificial landmarks is fused to complement the deficiency of topology map and guide to action behavior. The recognition algorithm uses a modified local Zernike moments and a probabilistic voting method for the robust detection of objects in cluttered indoor environments. An artificial landmark is designed to have a three-dimensional multi-colored structure and the projection distortion of the structure encodes the distance and viewing direction of the robot. We demonstrate the feasibility of the proposed system through real world experiments using a mobile robot, KASIRI-III.

  • PDF

Analysis of facial expression recognition (표정 분류 연구)

  • Son, Nayeong;Cho, Hyunsun;Lee, Sohyun;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.539-554
    • /
    • 2018
  • Effective interaction between user and device is considered an important ability of IoT devices. For some applications, it is necessary to recognize human facial expressions in real time and make accurate judgments in order to respond to situations correctly. Therefore, many researches on facial image analysis have been preceded in order to construct a more accurate and faster recognition system. In this study, we constructed an automatic recognition system for facial expressions through two steps - a facial recognition step and a classification step. We compared various models with different sets of data with pixel information, landmark coordinates, Euclidean distances among landmark points, and arctangent angles. We found a fast and efficient prediction model with only 30 principal components of face landmark information. We applied several prediction models, that included linear discriminant analysis (LDA), random forests, support vector machine (SVM), and bagging; consequently, an SVM model gives the best result. The LDA model gives the second best prediction accuracy but it can fit and predict data faster than SVM and other methods. Finally, we compared our method to Microsoft Azure Emotion API and Convolution Neural Network (CNN). Our method gives a very competitive result.