• Title/Summary/Keyword: Landing simulation

Search Result 175, Processing Time 0.027 seconds

Hard-landing Simulation by a Hierarchical Aircraft Landing Model and an Extended Inertia Relief Technique

  • Lee, Kyu Beom;Jeong, Seon Ho;Cho, Jin Yeon;Kim, Jeong Ho;Park, Chan Yik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.394-406
    • /
    • 2015
  • In this work, an efficient aircraft landing simulation strategy is proposed to develop an efficient and reliable hard-landing monitoring procedure. Landing stage is the most dangerous moment during operation cycle of aircraft and it may cause structural damage when hard-landing occurs. Therefore, the occurrence of hard-landing should be reported accurately to guarantee the structural integrity of aircraft. In order to accurately determine whether hard-landing occurs or not from given landing conditions, full nonlinear structural dynamic simulation can be performed, but this approach is highly time-consuming. Thus, a more efficient approach for aircraft landing simulation which uses a hierarchical aircraft landing model and an extended inertia relief technique is proposed. The proposed aircraft landing model is composed of a multi-body dynamics model equipped with landing gear and tire models to extract the impact force and inertia force at touch-down and a linear dynamic structural model with an extended inertia relief method to analyze the structural response subject to the prescribed rigid body motion and the forces extracted from the multi-body dynamics model. The numerical examples show the efficiency and practical advantages of the proposed landing model as an essential component of aircraft hard-landing monitoring procedure.

Design of A Simulation S/W for Evaluation of Auto-Landing Algorithms

  • Yoon sug-joon;Kim kang-soo;Ahn jae-joon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.3-8
    • /
    • 2003
  • A Simulation S/W is developed to evaluate performances of MLS (Microwave Landing System) and IBLS(Integrated Beacon Landing System) in precision auto-landing. For this study classical PID and optimal LQG controllers are developed as well as mathematical models of MLS and IBLS. Ship-landing condition is also considered by assuming sinusoidal movement of the ship in the pitch direction. The simulated aircraft is F-16 in the study of precision auto-landing. For the integrated simulation environment GUI windows are designed for input of parameter values necessary for simulation, such as vehicle performance and environmental data. For validation and verification of models various comparison graphs of simulation outputs are comprised in the GUI design as well as 3D visual simulation of vehicle dynamics.

  • PDF

Effects of Cavitation and Drop Characteristics on Oleo-Pneumatic Type Landing Gear Systems (공동현상을 고려한 유공압 방식 착륙장치의 낙하특성에 관한 연구)

  • Han, Jae-Do;Lee, Young-Sin;Kang, Yeon-Sik;Ahn, Oh-Sung;Kong, Jeong-Pyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • This paper investigated the drop characteristics of oleo pneumatic type landing gear for small aircraft and the effects of cavitations in modeling the landing gear system. The landing gear system employed a simple oleo pneumatic type damper without a metering pin. In general, oleo-pneumatic type landing gears are light-weighted because of it's simplicity, yet they offer excellent impact absorption characteristics. In this study, the landing gear system was modeled using MSC ADAMS, which offers a drop simulation module. After modeling the system, a series of testing was conducted, using a prototype landing gear system, to validate the analysis model and simulation results. The effect of cavitation was considered in the simulation model to obtain a better correlation between the test and simulation results. The results show that adding the cavitation effect in the simulation model significantly improved the simulation model and better captured the dynamic behaviors of the landing system. Using the 'cavitation' model, dynamics characteristics of the landing gear were further evaluated for other landing conditions, such as landing in various angles of slopes.

Helicopter Landing Gear Ground Reaction Simulation (헬리콥터 강착장치 시뮬레이션)

  • 최형식;전향식;오경륜;배중원;남기욱
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.131-135
    • /
    • 2004
  • Landing gear force reaction module is important for aircraft take off and landing simulation. But usually this modulo is not accounted for control law design simulation. because it does not affect the flying quality of aircraft. Now a days, this module is getting more important according to the increase of needs for training purpose simulation and specific control law design such as unmaned aircraft landing on the moving platform. In this paper 1DOF mass spring simple force system per gear was accepted.

  • PDF

Control Strategies for Landing Quadcopters on Ships with Legged Platform Based on Impedance Control (선박 위 착륙을 위한 임피던스 제어기반 쿼드콥터 족형 랜딩플랫폼 제어 전략)

  • Hwang, Seonghyeon;Lee, Seunghyeon;Jin, Seongho;Lee, Inho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.48-57
    • /
    • 2022
  • In this paper, we propose a legged landing platform for the quadcopter taking off and landing in the ship environment. In the ship environment with waves and winds, the aircraft has risks being overturned by contact impact and excessive inclination during landing on the ship. This landing platform has four landing legs under the quadcopter for balancing and shock relief. In order to make the quadcopter balanced on ships, the position of each end effector was controlled by PID control. And shocks have mainly happened when quadcopter contacts the ship's surface as well as legs move fast. Hence, impedance control was used to cope with the shocks. The performance of the landing platform was demonstrated by a simulation and a prototype in three sea states based on a specific size of a ship. During landing and tracking the slope of the ship's surface, oscillations of rotation and translation from the shock were mitigated by the controller. As a result, it was verified that transient response and stability got better by adding impedance control in simulation models and prototype experiments.

Finite Element Analysis of Impact Characteristics of Shoes-Leg Coupled Model to landing Mode (착지모드에 따른 신발-족 연계모델의 충격특성 유한요소 해석)

  • Ryu Sung-Heon;Kim Sung-Ho;Cho Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1191-1198
    • /
    • 2005
  • This paper is concerned with the numerical investigation of the landing impact characteristics of sport shoes to the landing mode. In most court sport activities, jumping and landing are fundamental motions, and the landing motion is largely composed of forefoot and rearfoot landing modes. Since the landing impact may, but frequently, lead to unexpected injuries of players, the investigation of its characteristics and the sport shoes design for reducing it are of a great importance. To investigate the landing impact characteristics to the landing mode, we construct a shoes-leg coupled model and carry out the numerical simulation by an explicit finite element method.

Research on Landing Impact Characteristic Of Multi-Wheel Bogie Landing gear's Truck

  • Cao, Xin;Jia, Yuhong;Tian, Jiajie
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.83-86
    • /
    • 2015
  • Taking the four-wheel bogie landing gear as an example, the force status of truck-like landing gear during the landing impact was analyzed and the simulation model of four-wheel bogie landing gear was established. Firstly, a landing gear prototyping model was established using CATIA and imported to LMS Virtual.lab. Secondly, dynamic analysis of the landing impact was simulated with the established model. Finally, with the help of LMS Virtual.lab's parametric design ability, the effects of landing approach and truck pitch angle on the landing performance, truck motion and truck beam strength were studied. These conclusions will be useful to the design and analysis of the truck.

Landing Motion Analysis of Human-Body Model Considering Impact and ZMP Condition (충격과 ZMP 조건을 고려한 인체 모델의 착지 동작 해석)

  • So Byung Rok;Kim Wheekuk;Yi Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.543-549
    • /
    • 2005
  • This paper deals with modeling and analysis fer the landing motion of a human-body model. First, the dynamic model of a floating human body is derived. The external impulse exerted on the ground as well as the internal impulse experienced at the joints of the human body model is analyzed. Second, a motion planning algorithm exploiting the kinematic redundancy is suggested to ensure stability in terms of ZMP stability condition during a series of landing phases. Four phases of landing motion are investigated. In simulation, the external and internal impulses experienced at the human joints and the ZMP history resulting from the motion planning are analyzed for two different configurations. h desired landing posture is suggested by comparison of the simulation results.

Auto-Landing Guidance System Design for Smart UAV

  • Min, Byoung-Mun;Shin, Hyo-Sang;Tahk, Min-Jea;Kim, Boo-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.118-128
    • /
    • 2006
  • This paper deals with auto-landing guidance system design applicable to Smart UAV(Unmanned Aerial Vehicle). The proposed guidance law generates horizontal position, velocity and altitude commands in the longitudinal channel and heading angle command in the lateral channel to track a predetermined trajectory for automatic landing. The longitudinal guidance commands are derived from an approximated dynamic equations in vertical plane. These longitudinal guidance commands are appropriately distributed to each control input as the flight mode of Smart UAV is changed. The concept of VOR(VHF Omni-directional Range) guidance system is applied to generate the required heading angle commands to eliminate the lateral deviation from the desired trajectory. The performance of the proposed guidance system for Smart UAV is evaluated using the nonlinear simulation. Simulation results show that the proposed guidance system for auto- landing provides good tracking performance along the predetermined landing trajectory.

Landing Dynamic and Key Parameter Estimations of a Landing Mechanism to Asteroid with Soft Surface

  • Zhao, Zhijun;Zhao, JingDong;Liu, Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.237-246
    • /
    • 2013
  • It is of great significance to utilize a landing mechanism to explore an asteroid. A landing mechanism named ALISE (Asteroid Landing and In Situ Exploring) for asteroid with soft surface is presented. The landing dynamic in the first turning stage, which represents the landing performance of the landing mechanism, is built by a Lagrange equation. Three key parameters can be found influencing the landing performance: the retro-rocket thrust T, damping element damping $c_1$, and cardan element damping $c_2$. In this paper, the retro-rocket thrust T is solved with considering that the landing mechanism has no overturning in extreme landing conditions. The damping element damping c1 is solved by a simplified dynamic model. After solving the parameters T and $c_1$, the cardan element damping $c_2$ is calculated using the landing dynamic model, which is built by Lagrange equation. The validities of these three key parameters are tested by simulation. The results show a stable landing, when landing with the three estimated parameters T, $c_1$, and $c_2$. Therefore, the landing dynamic model and methods to estimate key parameters are reasonable, and are useful for guiding the design of the landing mechanism.