• Title/Summary/Keyword: Landing motion

Search Result 149, Processing Time 0.028 seconds

Analysis of the Differences of the Shock Absorption Strategy between Drop-Landing and Countermovement-Jump (드롭 착지와 착지 후 점프 시 충격흡수 기전의 차이 분석)

  • Cho, Joon-Haeng;Kim, Kyoung-Hun;Koh, Young-Chul
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.379-386
    • /
    • 2012
  • The aim of this study was to investigate and identify the differences in lower extremity energy dissipation strategies between drop-landing and countermovement-jump maneuvers. Fourteen recreational athletes(Age : $23.3{\pm}2.1years$, Height : $172.3{\pm}4.0cm$, Weight : $69.2{\pm}4.7kg$) were recruited and instructed to perform drop-landing from 45 cm height and countermovement-jump from 45 cm to 20 cm height. The landing phase was taken as the time between initial contact and peak knee flexion. A motion-capture system consisting of eight infra-red cameras was employed to collect kinematics data at a sampling rate of 200 Hz and a force-plate was used to collect GRF data at a sampling rate of 2000 Hz. Paired t-test was performed to determine the difference in kinematics and kinetics variables between each task. During the countermovement-jump task, all of lower extremity joint ROM and the hip joint eccentric moment were decreased and the ankle joint plantarflexion moment was increased than drop-landing task. In the eccentric work during countermovement-jump task, the ankle joint displayed greater while knee and hip joint showed lesser than drop-landing. Therefore, the knee joint acted as the key energy dissipater during drop-landing while the ankle joint contributed the most energy dissipation during countermovement-jump. Our findings collectively indicated that different energy dissipation strategies were adopted for drop-landing and countermovement-jump.

A Kinetics Analysis of Tucked Backward Salto on the Balance Beam (평균대 제자리 무릎 구부려 뒤공중돌기 기술의 운동역학적 분석)

  • Kim, Kew-Wan;Ryu, Young;Jeon, Kyoung-Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.395-404
    • /
    • 2012
  • This study was to perform the kinetic analysis of tucked backward salto on the balance beam. Eight women's gymnastics players(age: $15.88{\pm}2.45yrs$, career: $6.38{\pm}0.52yrs$, height: $152.38{\pm}7.35cm$, weight: $44.25{\pm}7.54kg$) of the I-region participated in this study. The kinematic variables were analyzed response time of motion, angle, velocity, acceleration and the kinetic variables were analyzed ground reaction force(GRF) of motion. For measure and analysis of kinematic and kinetic variables of this study, used to synchronized to 6 Eagle camera and 1 force plate, used to the Cortex(Ver. 1.0) for analyzed of variables. The results were as follows; To the kinematic variables of tucked backward salto on the balance beam, a time appeared longer landing than air rotation, changes of angle regulated segment of body smaller moment of inertia when air rotation, larger moment of inertia when releasing and landing. A velocity appeared fast motion when releasing and air rotation of body, but appeared more decelerations from landing and acceleration showed to be tended to velocity. A GRF appears jump more than twice the weight at the moment that showed the power of motion to all subject.

Gender Differences of Vertical Drop Landing Strategies in College Students

  • Yi, Chung-Hwi;Park, So-Yeon;Yoo, Won-Gyu
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2004
  • The kinematics involved in different landing strategies may be related to the occurrence of trauma. Several sources suggest that the angle of knee extension on touchdown and impact with the ground determines the magnitude of the impact force and, indirectly, knee loading. This study compared the initial knee angle and maximum knee flexion angle at the instant of impact on drop-landings between healthy men and women. In this study, 60 participants (30 males, 30 females) dropped from a height of 43 cm. A digital camera and video motion analysis software were used to analyze the kinematic data. When landing, there was significant difference between the two groups ($15.67{\pm}6.05^{\circ}$ in male, $24.10{\pm}6.34^{\circ}$ in female) in the mean knee flexion angle. The range of knee flexion on landing ($44.06{\pm}10.97^{\circ}$ in male, $36.96{\pm}9.99^{\circ}$ in female) also differed significantly (p<.05). The greater knee flexion that was observed in the male subjects would be expected to decrease their risk of injury. Women land with smaller range of knee flexion than men and this might increase the likelihood of a knee injury.

  • PDF

The Effects of Gaze Direction on the Stability and Coordination of the Lower Limb Joint during Drop-Landing (드롭랜딩 시 시선 방향의 차이가 하지관절의 안정성과 협응에 미치는 영향)

  • Kim, Kewwan;Ahn, Seji
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.126-132
    • /
    • 2021
  • Objective: The purpose of this study was to investigate how three gaze directions (bottom, normal, up) affects the coordination and stability of the lower limb during drop landing. Method: 20 female adults (age: 21.1±1.1 yrs, height: 165.7±6.2 cm, weight: 59.4±5.9 kg) participated in this study. Participants performed single-leg drop landing task on a 30 cm height and 20 cm horizontal distance away from the force plate. Kinetic and kinematic data were obtained using 8 motion capture cameras and 1 force plates and leg stiffness, loading rate, DPSI were calculated. All statistical analyses were computed by using SPSS 25.0 program. One-way repeated ANOVA was used to compared the differences between the variables in the direction of gaze. To locate the differences, Bonferroni post hoc was applied if significance was observed. Results: The hip flexion angle and ankle plantar flexion angle were significantly smaller when the gaze direction was up. In the kinetic variables, when the gaze direction was up, the loading rate and DPSI were significantly higher than those of other gaze directions. Conclusion: Our results indicated that decreased hip and ankle flexion angles, increased loading rate and DPSI when the gaze direction was up. This suggests that the difference in visual information can increase the risk of injury to the lower limb during landing.

Biomechanical Analysis of Lower Extremity Joints According to Landing Types during Maximum Vertical Jump after Jump Landing in Youth Sports Athletes (유소년 스포츠 선수들의 점프착지 후 수직점프 동작 시 착지 유형에 따른 하지관절의 운동역학적 분석)

  • Jiho Park;Joo Nyeon Kim;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.3
    • /
    • pp.110-117
    • /
    • 2023
  • Objective: The purpose of this study was to find out kinematic and kinetic differences the lower extremity joint according to the landing type during vertical jump movement after jump landing, and to present an efficient landing method to reduce the incidence of injury in youth players. Method: Total of 24 Youth players under Korean Sport and Olympic Committee, who used either heel contact landing (HCG) or toe contact landing (TCG) participated in this study (HCG (12): CG height: 168.7 ± 9.7 cm, weight: 60.9 ± 11.6 kg, age: 14.1 ± 0.9 yrs., career: 4.3 ± 2.9 yrs., TCG height: 174.8 ± 4.9 cm, weight: 66.9 ± 9.9 kg, age 13.9 ± 0.8 yrs., career: 4.7 ± 2.0 yrs.). Participants were asked to perform jump landing consecutively followed by vertical jump. A 3-dimensional motion analysis with 19 infrared cameras and 2 force plates was performed in this study. To find out the significance between two landing styles independent t-test was performed and significance level was set at .05. Results: HCG showed a significantly higher dorsi flexion, extension and flexion angle at ankle, knee and hip joints, respectively compared with those of TCG (p<.05). Also, HCG revealed reduced RoM at ankle joint while it showed increased RoM at knee joint compared to TCG (p<.05). In addition, HGC showed greater peak force, a loading rate, and impulse than those of TCG (p<.05). Finally, greater planta flexion moment was revealed in TCG compared to HCG at ankle joint. For the knee joint HCG showed extension and flexion moment in E1 and E2, respectively, while TCG showed opposite results. Conclusion: Compared to toe contact landing, the heel contact landing is not expected to have an advantage in terms of absorbing and dispersing the impact of contact with the ground to the joint. If these movements continuously used, performance may deteriorate, including injuries, so it is believed that education on safe landing methods is needed for young athletes whose musculoskeletal growth is not fully mature.

Kinematical Analysis of Ropez Motion in Horse Vault (도마 Ropez동작의 운동학적 분석)

  • Back, Jin-Ho;Lee, Soon-Ho;Choi, Kyu-Jung;Moon, Young-Jin;Kim, Dong-Min;Park, Jong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.119-127
    • /
    • 2005
  • The purpose of this research helps to make full use for perfect performance by grasping the defects of Ropez motion performed by athlete CSM who was under the training for the 28th 2004 Athene Olympic Garnes, and by presenting complementary methods. For the better Ropez motion which had been performed by CSM for the 1st dispatch selection test and the final for the 28th Athene Olympic Game was analyzed with 3-dimensional cinematographic method. Here are the conclusions: 1. During the board contact phase, powerful kicking and rapid forward flexion motion of upper body make increasing vertical velocity of C. O. G and enlarging body angle. 2. It was indicated that rapid forward flexion motion of upper body during the board contact phase get a large body angle in horse take-off. 3. rapid forward flexion motion of upper body during the board contact phase makes a longer time at horse contacting phase. It showed that this result increased velocity of horse take-off causing by powerful blocking motion. 4. Increasing of air-borne height during pre- flight phase, makes a higher C. O. G; and larger angle of hip, angle of knee and body angle in the landing phase. And it revealed that these results have a stable landing.

The Study of Strategy for Energy Dissipation During Drop Landing from Different Heights (드롭랜딩 시 높이 변화에 따른 인체 분절의 충격흡수 전략에 관한 연구)

  • Cho, Joon-Haeng;Koh, Young-Chul;Lee, Dae-Yeon;Kim, Kyoung-Hun
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.315-324
    • /
    • 2012
  • The purpose of current study was to investigate the effects of the heights on the lower extremities, torso and neck segments for energy dissipation during single-leg drop landing from different heights. Twenty eight young healthy male subjects(age: $23.21{\pm}1.66yr$, height: $176.03{\pm}4.22cm$, weight: $68.93{\pm}5.36kg$) were participated in this study. The subjects performed the single-leg drop landing from the various height(30, 45 & 60 cm). Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. The results were as follows. First, the ROM at the ankle, knee, hip and trunk was increased with the increased heights but the ROM at the neck was increased in the 60cm. Second, the angular velocity, moment and eccentric work at the ankle, knee, hip, trunk, and neck was increased with the increased heights. Third, the contribution to total work at the knee joint was not significantly different, while the ankle joint rate was decreased and hip and neck rate was increased in the 60cm, and trunk rate was increased with the increased heights. Lastly, the increase in landing height was able to augment the level of energy dissipation not only at the lower extremities but also at the trunk and neck. The findings showed that drop landing affect trunk and neck with lower extremity joints. Therefore, we need to consider that trunk and neck strengthening including stability should be added to reduce sports injury during prevention training.

Shock Attenuation Mechanism in Drop Landing According to the Backpack Weight Changes (드롭랜딩 시 backpack 중량 변화에 따른 충격 흡수 기전)

  • Choi, Chi-Sun;Nam, Ki-Jeong;Shin, In-Sik;Seo, Jung-Suk;Eun, Seon-Deok;Kim, Suk-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.25-35
    • /
    • 2006
  • The purpose of this study was to investigate the shock attenuation mechanisms while varying the loads in a backpack during drop landing. Ten subjects (age: $22.8{\pm}3.6$, height: $173.5{\pm}4.3$, weight: $70.4{\pm}5.2$) performed drop landing under five varying loads (0, 5kg. 10kg. 20kg. 30kg). By employing two cameras (Sony VX2100) the following kinematic variables (phase time, joint rotational angle and velocity of ankle, knee and hip) were calculated by applying 2D motion analysis. Additional data, i.e. max vertical ground force (VGRF) and acceleration, was acquired by using two AMTI Force plates and a Noraxon Inline Accelerometer Sensor. Through analysing the power spectrum density (PSD), drop landing patterns were classified into four groups and each group was discovered to have a different shock attenuation mechanism. The first pattern that appeared at landing was that the right leg absorbed most of the shock attenuation. The second pattern to appear was that subject quickly transferred the load from the right leg to the left leg as quickly as possible. Thus, this illustrated that two shock attenuation mechanisms occurred during drop landing under varying load conditions.

Analysis of Biomechanical Effect of the Subtalar Sling Ankle Taping (거골하 관절 현수 테이핑의 생체 역학적 효과 분석)

  • Choi, Mun-Suk;Jeon, Hye-Seon;Kim, Young-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.135-144
    • /
    • 2007
  • The purpose of this study was to identify the effect of the subtalar sling ankle taping, by measuring changes in peak plantar pressure and subtalar angle during jump landing and walking in healthy subjects with subtalar sling ankle taping applied of the ankle joint. Fifty healthy subjects(8 males and 7 female, aged 22 to 25) were randomly divided into a participated in this study. They were free of musculoskeletal injury and neurologic deficit in lower extremity. The subjects were asked to perform 5M walking and single leg jump landing by under the guidance of physical therapists. Subtalar motions were typically measured as the angle made between the posterior aspect of the calcaneous and the posterior aspect of the lower leg during walking with taping or not. This measurement were made using a video system (30Hz sampling rate, rectified 60 Hz sampling rate). At the same time, peak lateral and vertical pressure were investigated using pressure distribution platforms(MatScan system) under foot during walking and single leg jump landing with taping or not. Statistical analysis was done by paired t-test and intraclass correlation coefficient [ICC(3.1)], using software SPSS. We have recently demonstrated significantly altered patterns of subtalr joint and peak plantar pressure when applied subtalar sling ankle taping(p<.05). Inversion angle of subtalar joint significantly decreased with taping(p<.05). The result suggest that pressure patterns observed in subjects are likely to result due to significant decrease in stress on ankle joint structures during jump landing and walking. Also, the result that the subtalar sling ankle taping procedure provides greater restiction of motion associated with ankle inversion. However, this study involved asymptomatic subjects without history of ankle inversion injury, further research is needed to assess the motion restraining effect of the subtalar sling ankle taping in subjects with lateral ankle instability.