• Title/Summary/Keyword: Landfill reduction

Search Result 117, Processing Time 0.029 seconds

Study on the Support Policy for Recycling Food Wastes into Feed & Compost (음식물류 폐기물의 사료화 및 퇴비화 등 자원화 지원정책에 관한 연구)

  • Ahn Sang-Sun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.52-63
    • /
    • 2005
  • Korea has recently implemented two m메or policies on organic wastes, including food wastes. One is the Volume-Based waste Fee System (VBWFS). which went effect nationwide in January 1995, and the other is a ban on the landfill of organic wastes, such as food wastes. organic sludge, and animal manure, in accordance with the Waste Management Act. These two policies have brought about remarkable positive effects, including the reduction of organic wastes at source, and the development of technology for recycling food wastes into feed and compost. However, they have caused obstacles to carry out the policy on food wastes, in areas of legal and technological infrastructures for recycling. Therefore, this study intends to find problems of policies for recycling food wastes, and to suggest ways to resolve them.

Effects of Quicklime Treatment on Survival of Bacteria and Structure of Bacterial Community in Soil (생석회 처리가 토양 세균의 생존과 군집구조에 미치는 영향)

  • Zo, Young-Gun
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • When quicklime is added into soil for various purposes, abrupt changes in soil chemistry may affect essential ecological functions played by indigenous bacterial communities in soil. The magnitude of influence was estimated by observing changes in abundance and diversity of soil bacteria after quicklime treatment. When several soil samples were treated up to 20% (w/w) quicklime, plate count of viable cells ranged $10^2{\sim}10^3$ CFU $g^{-1}$, showing a reduction of more than $10^4$ times from viable counts of the untreated sample. Diversity of the bacterial isolates that survived after quicklime treatment was analyzed by conducting $GTG_5$ rep-PCR fingerprinting. There were only two types of fingerprints common to both 5% and 20% quicklime samples, implying that bacteria surviving at different strength of quicklime treatment differed depending on their tolerance to quicklime-treated condition. Isolates surviving the quicklime treatments were further characterized by Gram staining and endospore staining. All isolates were found to be Gram positive bacteria, and 85.4% of them displayed endospores state. In conclusion, most bacteria surviving quicklime treatment appear to be endospores. This finding suggests that most of ecological functions of bacteria in soil are lost with quicklime treatment.

Effect of granite fines on mechanical and microstructure properties of concrete

  • Jain, Kishan Lal;Sancheti, Gaurav
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.461-470
    • /
    • 2022
  • Solid waste management is of great concern in today's world. An enormous amount of waste is generated from various industrial activities. Concrete production utilizing some of the potential waste materials will add to the benefit of society. These benefits will include reduction of landfill burden, improved air quality, riverbed protection due to excessive sand excavation, economical concrete production and much more. This study aims to utilize waste granite powder (GP) originating from granite industries as a sand replacement in concrete. Fine GP was collected in the form of slurry from different granite cutting industries. In this study, GP was added in an interval of ten percent as 10%, 20%, 30%, 40% and 50% by weight of sand in concrete. Mechanical assets; compressive strength, flexural strength and splitting tensile strength were prominent for control and blended mixes. Modulus of elasticity (MoE) and abrasion tests were also performed on control and blended specimens of concrete. To provide a comprehensive clarification for enhanced performance of GP prepared concrete samples, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed. Results indicate that 30% replacement of sand by weight with GP enhances the mechanical assets of concrete and even the results obtained for 50% replacement are also acceptable. Comprehensive analysis through SEM and XRD for 30% replacement was better than control one. The performance of GP added to concrete in terms of abrasion and modulus of elasticity was far better than the control mix. A significant outcome shows the appropriateness of granite fines to produce sustainable and environmentally friendly concrete.

Evaluation of Initial Moisture Content Effect and Microorganisms Activity in Small-scale Composting Equipment (소규모 퇴비화 장치에서 초기 함수율의 영향 및 분리 균주의 활성도 평가)

  • Juea, Se-Hong;Kong, Sun-Hyung;Choi, Kwang-Soo;Jeun, Hong-gea;Kim, Chang-Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.2
    • /
    • pp.29-37
    • /
    • 1997
  • Because food waste have high moisture content, landfill or incineration is not most suitable. The reuse of food waste by composting contribute to solve resourse, environmental, aglicultural problems. The purpose of this research is to optimise operating conditions and to develop new microorganisms for recycling of food waste by ultilizing small-scale composting equipment. The reduction rate of food waste was 75~85% by weight, and it was coincided with moisture reduction. When initial moisture was 25%, 45% and 60%, C/N ratio on based net weight was 9.8, 10.7 and 11. 8, respectively. And it was suitable for composting. But, The developed microorganism, PNU2, was better than existing commercial seed in the activity based on $CO_2$ concentration.

  • PDF

Characteristics of Reduction of Hydration Heat through Utilization of Blast Furnace Slag in the Cement-based Landfill Soil Liner System (고로슬래그를 이용한 폐기물 매립지 고화토차수층의 수화열 저감특성)

  • Cho, Jae-Beom;Hyun, Jae-Hyuk;Lee, Jong-Deuk;Park, Joung-Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1327-1331
    • /
    • 2005
  • This study was to investigate the reduction of hydration heat by utilizing industrial by-products such as BFS(Blast Furnace Slag). DM(Dredged Mud) was used by parent soil and Ordinary portland cement was used by cementing material. Additive added to reduce the heat of hydration was BFS. From the results of experiment, hydration heat was decreased in accordance with the addition of BFS. The reason was that surface of BFS coated with aluminosulfate. Initial uniaxial strength was low, neither was not long term uniaxial strength. It was concluded that silica rich layer($H_2SiO_4^{4-}$) in solid phase early in the reaction of hydration was difficultly moved in liquid phase due to the increase of ZP(Zeta Potential). However, the ZP in the later hydration was decreased due to the acceleration of mobility of silica rich layer($H_2SiO_4^{4-}$). Therefore, long term physical properties such as uniaxial strength revealed.

Evaluation of Economic Feasibility of Power Generation System using Waste Woody Biomass in a CFBC Plant (순환유동층연소로에서 폐목질계 바이오매스를 이용한 발전 시스템의 경제성 평가)

  • Kim, Sung-June;Nam, Kyung-Soo;Lee, Jae-Sup;Seo, Seong-Seok;Lee, Kyeong-Ho;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • Economic feasibility of power generation system using waste woody biomass in a circulating fluidized bed combustor has been investigated. Effects of important variables such as capital investment, cost of waste wood, certified emission reduction(CER), system marginal price(SMP) on the benefit of business have been analyzed. Internal rate of return(IRR) was predicted as 16.67%, which implicates the business is promising based on the assumptions such as SMP of 99 Won/kWh, capital cost of 10.65 billion won, and complimentary providing of waste wood. Major factors affecting the benefit of business were as follows; system marginal price, operational rate, capital investment, expenditure of waste wood, certified emission reduction. In addition, it must be necessary to consider CHP power plant providing steam as one of the means to diversify sales network, for the management of the business risk.

Derivation of Optimum Operating Conditions for Electrical Resistance Heating to Enhance the Flushing Effect of Heavy Oil Contaminated Soil (중질유 오염토양의 세정효과를 증진시키기 위한 전기저항가열의 최적 운전조건 도출)

  • Lee, Hwan;Jung, Jaeyun;Kang, Doore;Lee, Cheolhyo
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.219-229
    • /
    • 2020
  • This study evaluated the applicability of the convergence technology by deriving the optimum conditions about operating factors of electrical resistance heating to enhance the soil flushing effect on soil contaminated with bunker C oil in the coastal landfill area. As a result of the batch scale experiment, the flushing efficiency of the VG-2020 was higherthan that of the Tween-80, and the flushing efficiency increased by about 1.4 times at 60℃ compared to room temperature. As a result of the electrical resistance heating box experiment, soil temperature rose to 100℃ in about 40~80 minutes in soil with water content of 20~40%, and it was found that the heat transfer efficiency is excellent when the pipe-shaped electrode rod with STS 316 material is located in a triangular arrangement in saturated soil. In addition, it was confirmed that the interval between the electrode rods to maintain the soil temperature above 60℃ under the optimum conditions was 1.5 m, and the soil flushing box experiment accompanying electrical resistance heating showed TPH reduction efficiency of about 55% at 5 Pore Volume, and satisfied the Korean standard for the conservation of soil (less than TPH 2,000 mg/kg) at 10 Pore Volume.

Analysis of estimated and actual reductions through registered LFG CDM projects in developing countries (개발도상국 매립가스 CDM 등록사업의 예상실적과 감축실적 분석)

  • Ryu, Seungmin;Pak, Daewon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.2
    • /
    • pp.5-14
    • /
    • 2021
  • As the implementation of carbon reduction measures would be monitored starting from 2023 in line with the Paris Agreement, it is crucial and urgent to control GHGs emitted from wastes contributing to 11% of methane emissions. Despite such importance and urgency, 93% of wastes are deposited in unsanitary landfills in developing countries, presenting challenges to methane management. Against the backdrop, landfill gas-to-energy projects have once again drawn attention for their economic substantiality secured through CDM projects while there has been much research actively carried out to estimate methane emissions and GHG reductions in landfills located in developing countries. Although a signifiant difference was found between estimations calculated based on research methodologies and actual results monitored through registered CDM projects, there has not been a study conducted on what is causing such a difference. Accordingly, the research team conducted an analysis of 18 LFG projects out of 46 that were registered as LFG CDM projects under the UNFCCC and has identified precipitation(28%), malfunction(22%), organic content(11%), amount of landfilled waste(11%) and temperature(11%) as key parameters causing the difference between the amount of methane captured and the amount of GHG reduced.

Challenges of Medical Waste Treatment in Fiji (피지국에서의 의료폐기물 처리현황과 문제점)

  • Kim, Daeseon;Bolaqace, Josefa;Rafai, Eric;Lee, Chulwoo
    • Journal of Appropriate Technology
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • Medical waste is any kind of waste that contains infectious material and recommended not to be transferred for infection control. As a means of disposal, incineration has better points than dumping or landfill in the quantity reduction, odorless and nonhazardous. However, open burning and incineration of health care wastes under bad circumstances, can result in the emission of environmental pollutants to air. A burial of biological waste brings pollution of soil and water. Most of sub divisional hospitals in Fiji transfer their medical wastes to divisional hospitals for incineration. In 2011, 62,518 kg of medical waste was incinerated in the three divisional hospitals. However, some medical wastes are considered as general waste and burnt or sent to landfill site, some are buried on site in some sub-divisional hospitals. In this regards, urgent education is necessary for awareness promotion to relevant personnel in medical waste treatment. On site incineration using small scale incinerator is more recommended than transportation of medical wastes treatment in Fiji. Moreover, remotely controllable and fixable small scale of incinerator is more desirable in sub-divisional hospitals. It is recommended that Fiji government to set up a legal framework for medical waste management (MWM), to develop specific guidelines for MWM, to set up a training system for MWM to ensure that all relevant personnel are trained, to develop a monitoring and supervision system for MWM, to clarify the future financing of MWM activities, and to improve the MWM infrastructure.

A study on degaradation stabilization of organic material through aerobic treatment before landfill of domestic waste (생활폐기물의 호기성처리를 통한 유기물 분해안정화에 관한 연구)

  • Lee, Hyun-Hee;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.79-89
    • /
    • 2003
  • The purpose of this study is to investigate appropriate environmental factors when domestic waste is decomposed as aerobic digestion. So stabilization degree was measured after the waste is mixed as certain rates and water content was controlled by 55% and 60%. Variation of VS showed food waste in reactors of number 1, 2, 3, 4 and 5 was decomposed fully except reactor of number 6. Decomposition degree of VS in reactors of number 1, 2, 3 and 4 was not different high because Vinyl and plastic inserted played role bulking agent in reactor number 1, 2, 3 and 4. In reactors, maximum temperature indicated $57{\sim}59^{\circ}C$ and temperatures in reactors 1, 2, 3 and 4 were higher and remained longer than in reactor 5 and 6 for 2~4 days. Variation of $CO_2$ was similar to that of VS. The reduction rate of water content was low because moisture generated by oxidation fever of microorganism did not evaporated well. pH was low in the beginning of the reaction however, as time passed, it increased slightly and remained regular pattern. EC and C/N showed the same pattern as pH. Settlement and weight reduction rates were similar to the factors above. Reactor 1, 2, 3, and 4 showed higher settlement and weight reduction rate than reactor 5 and 6.

  • PDF