• Title/Summary/Keyword: Landfill mining

Search Result 13, Processing Time 0.018 seconds

A survey on the content of inorganic materials in ground-water of Northern Gyeonggi area (경기북부지역 지하수의 지역별 미량무기물질 함유실태 조사연구)

  • 오조교;손진석;배용수;정은희;박진호;황선민;정연훈
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.1
    • /
    • pp.8-16
    • /
    • 2004
  • Ground water samples were collected from residential, green" industrial, landfill and mining area and analyzed for 23 inorganics from March to October in 2002. The results are as follows; 1. The detection frequencies of inorganic materials such as As, Ba, B, Mo, Ca, Mg, Al, Cu, Fe, Mn, Zn, Na, K were 7.2∼77.1% which showed that these inorganics were detected in many ground waters. 2. The detection frequencies of 7 inorganics(Cd, Cr, Ph, Se, Sb, Be, Tl) were commonly low at ranging from 0.42 to 2.5%. These inorganics were contained in ground water partially. 3. Three inorganics such as Hg, Ni, Ag were not detected in any ground-water samples. 4. Compared to the other areas, ground water samples from landfill area contained greater concentration in many inorgainics and then showed higher levels in industral, residential, mining and green area in order. 5. Compared to noted concentrations of bottled water, inorganic minerals including Ca, Mg, Na, K related to taste were fluent in target samples. The results showed that the average concentrations of Mg, Na, K were 4.0 mg/l, 14.7 mg/l, 1.5 mg/l respectively. 6. The concentrations of inorganics such as Sb, Ba, Mo, Be, Tl, K in some ground water samples exceeded the water quality standards of WHO, the US and UK. Especially, Ba, Mo, K also showed relatively high detection frequencies so these inorganics need to be considered as analytes in Korea Drinking Water Regulation in further study.

Appropriate Technologies for Municipal Solid Waste Management in Bantayan Island, Philippines

  • Yu, Kwang Sun;Thriveni, Thenepalli;Jang, Changsun;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.54-61
    • /
    • 2017
  • In general, solid waste arises from lots of human activities such as domestic, agricultural, industrial, commercial, waste water treatment, construction, and mining activities etc. If the waste is not properly disposal and treated, it will have a negative impact to the environment, and hygienic conditions in urban areas and pollute the air with greenhouse gases (GHG), ground water, as well as the soil and crops. In this paper, the Carbon Resources Recycling Appropriate Technology Center feasibility studies are reported at Bantayan Island, Philippines on the municipal solid waste management. The present objective of our study is to characterize the municipal solid waste incineration (MSWI) bottom ash and case study of MSWI production status in Bantayan, Philippines. Currently, wide variety of smart technologies available for MSWI management in developed countries. Recycling is the other major alternative process for MSWI landfill issues. In this paper, the feasibility studies of applied appropriate technologies for the municipal solid waste generation in Bantayan Island, Philippines are reported.

Waste and Recycling Status of Europe, Japan and USA (유럽, 일본, 미국의 폐기물 및 재활용 현황)

  • LEE, Sang-hun;YOO, Kyoungkeun
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.92-101
    • /
    • 2021
  • The status of waste generation and recycling in 32 countries in the European Union (EU), Japan, and the United States was investigated and summarized to encourage overseas market expansion for domestic urban mining industries. Among the 32 EU countries, Germany has the highest amount of material consumption and generates the largest quantity of waste. Minerals such as mine and soil wastes constitute the largest type of waste in the EU. With respect to waste treatment techniques, landfill and recycling are applied to 39% and 38% of the waste, respectively, implying the necessity to promote recycling. Japan's total waste generation declined recently to less than 400 million tons. The largest amount of waste is generated by the manufacturing industries. The proportion of total recycled waste is estimated to be slightly over 50%, but the proportions are greater than 90% for metal scrap and 60% for waste plastics. The amount of waste produced in the United States recently exceeded 265 million tons; 52.1% of the waste is landfilled, while only 25.1% is recycled. Therefore, the recycling industry has to be developed further.