• Title/Summary/Keyword: Landfill final cover

Search Result 27, Processing Time 0.02 seconds

A Study on the Measurement of Gas Discharge from the Gas Vent of Sanitary Landfill(1)- analysis for minimizing the measurement error of flow meter - (쓰레기 매립지 가스포집관에서 유출가스 계측에 관한 연구(1) -유량계 계측오차의 최소화를 위한 해석 -)

  • 이해승;이찬기
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.83-92
    • /
    • 1998
  • This study presents a relationship between gas quantity and measurement resistance using the bubble meter, the water head indicator and the rotor meter from the gas vent sanitary landfill. From the one-dimensional analyses and experiments, the below results have been obtained. The gas volume sourcing from the gas vent depends on the permeability of final cover soil, its cover depth and distance between the gas vents. The total gas volume producing in the interested domain may be accurately measured by the bubble meter, the water head indicator and the rotor meter if the clay is used for the final cover soil. The required times approaching to the steady-state are different with respect to the flow meters, one day is for the bubble meter and the water head indicator and one hour for the rotor meter.

  • PDF

A Comparative Study on the Feasibility of Geosynthetics Clay Liner and Compacted Mixing Material Using By-products from Sewage Sludge to the Final Cover Materials in Landfills (하수 슬러지 부산물을 이용한 다짐혼합재 및 토목합성수지점토라이너의 최종복토 차단층재로의 적용성에 관한 비교연구)

  • Jeong, Ji-Hoon;Lee, Jai-Young;Lee, Myung-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.49-52
    • /
    • 2008
  • Most of waste sludge has generally been disposed in landfill site or dumped in the ocean, which will be banned by the content of its heavy metals according to London Dumping Convention in Korea. Therefore, environmentally friend methods are urgently required for the treatment and disposal of the sewage sludge. Thermal hydrolysis is one of the good treatment methods to solve the sludge problems. In this study, the physical and environmental testing was conducted to evaluate the feasibility of by-product cake from the thermal hydrolysis as liner or cover materials in landfill.

  • PDF

The Moisture Migration of Compacted Clay Liners in the Landfill on Winter Condition (겨울철 조건하의 폐기물매립지 점토층의 수분이동)

  • 이재영;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.47-52
    • /
    • 1997
  • The experimental investigations considered in this paper are similar in many respects to those of Lee$^1$, with some key differences. First, there is no layering of the soils in a heterogeneous liner. The only soil investigated is the clay component of the cover liner. This ensures that the clay is exposed to freezing and that frost propagation in the clay can be investigated separate from other processes. Second, a closed system approach to the simulation was adopted. According to Jones$^2$, closed-system freezing occurs when there is no source of water available beyond that originally present in the soil voids. Freezing under such conditions results in very thin or non-existent ice lenses. One of tile objectives of the experiments described in this paper was the moisture migration and the changing of moisture contents of the compacted clay liner in landfill. The closed-system was used to limit tile variables in the experimental simulation to make these calculations more direct, although the final results could be applied to an open system also. As a result, the moisture content decreased about 45%-46% after two freeze/thaw cycles.

  • PDF

Case Study of Remidation and Investigation of Closed Unsanitary Landfill for Prevention of Leachate (비위생매립지 정밀조사 및 침출수 방지를 위한 정비방안 연구)

  • Kim, Sangkeun;Lee, Yongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.5-13
    • /
    • 2012
  • For the last decade the amount of waste has rapidly been increased in South Korea and many waste landfills have been built according to government guidelines specifying required systems such as landfill liner, leachate collecting facilities, final cover system, etc. This effort has led the recently constructed landfills to be under well managed sanitary condition. In a meanwhile closed waste-landfill sites in the past before the adoption of the government guidelines exits under unsanitary condition. In these cases untreated leachate flew out to the surroundings due to the absence of liner and leachate collecting facilities and caused groundwater and soils to be contaminated. Waste generated odor and gas also brought civil complaints. Because environmental influences bring serious problems nearby sites, it is required to have unsanitary waste-landfills to be appropriately treated and managed. A study to evaluate environmental influence and contamination level of surroundings nearby and on the unsanitary landfills is necessary before the establishment of "Management guide of closed landfill site." This paper presents an environmental evaluation for the closed site, Doil-dong landfill, according to "Closed landfill management regulation" by Ministry of Environment. "D" landfill, located in Pyeongtaek city, has possobility to contaminate surrounding surfacewater and groundwater by leakage of leachate. The in-situ stabilization carried out to build the DMW(deep soil mixing cutoff wall) wall and drainage systems.

Review of the Estimation Method of Methane Emission from Waste Landfill for Korean Greenhouse Gas and Energy Target Management System (온실가스·에너지 목표관리제를 위한 폐기물 매립시설 메탄배출량의 적정 산정방법에 관한 고찰)

  • Seo, Dong-Cheon;Nah, Je-Hyun;Bae, Sung-Jin;Lee, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.867-876
    • /
    • 2013
  • To promote the carbon emission trading scheme and reduce greenhouse gas (GHG) emission as following 'Korean GHG & Energy Target Management System', GHG emissions should be accurately determined in each industrial sector. For the estimation method of GHG emission from waste landfill, there are several error parameters, therefore we reviewed the estimation method and proposed a revised method. Methane generation from landfill must be calculated by the selected method based on methane recovery rate, 0.75. However, this methodology is not considered about uncertainty factor. So it is desirable that $CH_4$ generation is estimated using first order decay model and methane recovery should use field monitoring data. If not, $CH_4$ recovery could be applied from other study results; 0.60 of operational landfill with gas vent and flaring system, 0.65 of operational site with landfill gas recovery system, 0.90 of closed landfill with final cover. Other parameters such as degradable organic carbon (DOC) and fraction of DOC decompose ($DOC_f$) need to derive the default value from studies to reflect a Korean waste status. Proper application of MCF that is selected by operation and management of landfill requires more precise criteria.

An Evaluation of Interface Shear Strength between Geosynthetic Clay Liner and Geomembrane (토목섬유 점토 차수재(GCL)와 지오멤브레인(GM)의 접촉 전단강도 평가)

  • 서민우;김동진;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.137-146
    • /
    • 2002
  • Geomembrane, compacted clay liner, and geosynthetic clay liner (GCL) are widely used to prevent leachate from leaking to adjacent geo-environment at a municipal solid waste (MSW) landfill. Interface shear strength between GCL and geomembrane installed at a landfill side slope is important properties for the safe design of side liner or final cover systems. The interface shear strength between two geosynthetics was estimated by a large direct shear test in this study. The shear strength was evaluated by the Mohr-Coulomb failure criterion. The effects of normal stress, hydration or dry condition, and a hydration method were investigated. The test results show that the interface shear strength and shear behavior varied depending up on the level of normal stress, the type of geosynthetic combinations, and a hydration method. When GCLs were sheared after being hydrated under 6kPa loading, the results were consistent with those published by other researchers. Summaries of friction angles, normal stress and hydration condition is presented. These friction angles could be used as a reference value at a site where similar geosynthetics are installed.

Evaluation of Field Applicability with Coal Mine Drainage Sludge as a Liner: Part II: Effect of Freezing/Thawing in CMDS Mixed Liner (차수재로의 광산슬러지 재활용 적용성 평가: Part II: 동결/융해에 의한 광산슬러지 혼합 차수재의 거동)

  • Lee, Jai-Young;Bae, Sun-Young;Park, Kyoung-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.73-79
    • /
    • 2011
  • Based on the results of Part 1 of our two-parts paper, the possibility on field applicability of CMDS(Coal Mine Drainage Sludge) mixed with bentonite and cement as a liner in landfill sites was investigated. The optimum moisture content that met the landfill liner condition was obtained when the ratio of CMDS: bentonite: cement was 1: 0.5: 0.3 in a lab-scale. The relative compaction was measured in 90.1%, which results for construction field have been generally acceptable. In this study, a large-scale Lysimeter($1.0m{\times}1.5m{\times}2.0m$) was used to simulate the effects of the layer on the freeze/thaw by -20 average temperature. The mixture after freezing/thawing showed compressive strength more than $5kg/cm^2$, which was satisfied with EPA standards. Initial permeability of CMDS was $7.10{\times}10^{-7}cm/s$ and permeability its mixture after freezing/thawing was increased to $9.80{\times}10^{-7}cm/s$. The change of temperature in the layers rises and falls with linear and temperature gradient keep maintain the present state. Moisture contents in the layers have not been radically changed. Through the leaching test determined by KSLT method, it was found that heavy metals excluding Zn and Ni were not leached out or leached out less than the standards during 7 cycles of freezing/thawing process. Since it shows the increased permeability about 1.5 times and slight change in moisture content, but it was satisfied with EPA standar through 7 cycles of freezing/thawing process, this mixture can be applied as a liner in landfill final cover system.