• 제목/요약/키워드: Landfill Cover

검색결과 112건 처리시간 0.021초

Flyash를 이용한 일일복토재의 포설 사례 연구

  • 박상현;한완수;이재영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.386-389
    • /
    • 2002
  • It may be necessary to apply a daily fever to operate the municipal solid waste landfill. The daily cover helps to control nuisance factors such as the escape of odors, dusts and airborne emissions, and can control the population of disease vectors. Also it may be reduce the infiltration of rain, decreasing the generation of leachate and the potential for surface water and groundwater contamination. Because of its usual availability and traditional usage as the municipal solid waste landfill, soil remains as the most common daily cover material. However, soil tends to reduce the volume of dumping waste c;3pacity in the landfill, it also reduces a period of using in the landfill. Therefore, it is necessary to research about Alternative Daily Cover Materials (ADCMs) because of the limitation of landfill sites. Recently, The types of ADCMs are classified into geosynthetics, forms, spray-ons, indigenous materials. In this study, the authors have tested the spray type of Alternative Daily Cover(ADC) using by flyash, alum with cement. The development. of ADCMs will be highly effective in terms of prolongation using landfill.

  • PDF

동결/융해에 따른 폐기물 매립지 복토층 연구 (A Study of Landfill Coyer Liners by Freezing/Thawing)

  • Jai-Young Lee
    • 한국토양환경학회지
    • /
    • 제1권1호
    • /
    • pp.103-109
    • /
    • 1996
  • 일반 및 특정폐기물 매립지에서 복토층의 중요성은 매립지의 바닥층 만큼 강조되지는 않는 것 같다. 그러나 실제로 매립지의 파괴 원인중에 가장 커다란 영향을 미치는 것은 복토층 설치의 실패에서 온다고 볼 수 있다. 특히 복토층 기능은 우수를 지표면으로 유출증진하여 매립장 안으로 침투 억제시키며, 폐기물의 노출시 자연환경 위생에 대하여 완충작용을 하며, 매립지의 침하 및 침강을 억제하는데 있다. 본 연구는 겨울철 동결/융해에 따른 폐기물 매립지 최종복토의 거동을 수행하였으며, 폐기물 매립지에서와 같은 조건을 부여하기 위해 거대한 Lysimeter를 설치하여 실제로 최종복토에 쓰여지는 물질로 세가지 실험을 수행하였다. 실험결과는 동결/융해에 따른 점토층의 변화를 묘사하고 있으며 또한, 매립지에서의 동결깊이에 따른 복토층의 파괴는 점토의 물리 적, 공학적인 측면에 영향을 주며 이러한 영향은 매립지 설계시 고려되어야 한다고 본다. 본문은 실험에 사용되어진 복토층의 물질, 복토층의 묘사와 그들의 실험결과에 대한 결과분석 및 결론을 설명하고 있다.

  • PDF

Methane Oxidation in Landfill Cover Soils: A Review

  • Abushammala, Mohammed F.M.;Basri, Noor Ezlin Ahmad;Irwan, Dani;Younes, Mohammad K.
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권1호
    • /
    • pp.1-14
    • /
    • 2014
  • Migration of methane ($CH_4$) gas from landfills to the surrounding environment negatively affects both humankind and the environment. It is therefore essential to develop management techniques to reduce $CH_4$ emissions from landfills to minimize global warming and to reduce the human risks associated with $CH_4$ gas migration. Oxidation of $CH_4$ in landfill cover soil is the most important strategy for $CH_4$ emissions mitigation. $CH_4$ oxidation occurs naturally in landfill cover soils due to the abundance of methanotrophic bacteria. However, the activities of these bacteria are influenced by several controlling factors. This study attempts to review the important issues associated with the $CH_4$ oxidation process in landfill cover soils. The $CH_4$ oxidation process is highly sensitive to environmental factors and cover soil properties. The comparison of various biotic system techniques indicated that each technique has unique advantages and disadvantages, and the choice of the best technique for a specific application depends on economic constraints, treatment efficiency and landfill operations.

Relationship between Plant Species Covers and Soil Chemical Properties in Poorly Controlled Waste Landfill Sites

  • Kim, Kee-Dae;Lee, Eun-Ju
    • Journal of Ecology and Environment
    • /
    • 제30권1호
    • /
    • pp.39-47
    • /
    • 2007
  • The relationships between the cover of herbaceous species and 15 soil chemical properties (organic carbon contents, total N, available P, exchangeable K, Na, Ca and Mg, HCl-extractable Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in nine poorly controlled waste landfill sites in Korea were examined by correlation analysis and multiple regression equations. Species showed different patterns of correlation between their cover values and soil chemical properties. The cover of Ambrosia artemisiifolia var. elatior, Aster subulatus var. sandwicensis and Erechtites hieracifolia were negatively correlated with the contents of Fe, Mn and Ni within landfill soils. Total cover of all species in quadrats was positively correlated with the contents of Cd and negatively correlated with the contents of Mn and Fe from stepwise regression analysis with 15 soil properties. Canonical correspondence analysis demonstrated that the distribution of native and exotic plants on poorly controlled landfills was significantly influenced by the contents of Na and Ca in soils, respectively.

PS Ball 풍쇄슬래그의 일일복토재 및 집배수재 재활용을 위한 연구 (A Study on the alternative daily cover and envelop materials of PS Ball slag)

  • 김상근;정하익;송봉준;장원석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1408-1411
    • /
    • 2005
  • The purposes of daily cover are to control odor and volatile organic compound emissions, to control litters, to mitigate rainfall infiltration. Under usual operation of landfill, the soil layer of 15cm thick is used for daily cover, but about $20{\sim}$25% of landfill capacity is consumed by daily cover volume. Considering our limited land and difficulty in getting landfill site, developing an alternative daily cover material which usually occupies much less volume than soil will be very significant. Also, if we can use waste material for alternative daily cover, we can get additional benefit of recycling waste.

  • PDF

폐기물 매립지 최종복토 차단층으로서 Geosynthetic Clay Liner 적용성 평가 (The Evaluation of Geosynthetic Clay Liner as a barrier layer for the Final Cover System in landfill)

  • 이정란;문철환;정찬기;이재영
    • 한국지반신소재학회논문집
    • /
    • 제3권2호
    • /
    • pp.23-29
    • /
    • 2004
  • 폐기물 매립지 최종복토의 주요 기능중 하나는 매립지 내부로 우수의 침투를 억제하는 것이다. 이러한 기능을 담당하는 차단층은 폐기물 관리법상 다짐점토층(45cm)의 단독포설이나 다짐점토층(30cm)상부에 HDPE를 복합으로 포설하도록 되어 있다. 그러나 바닥층 사면부에서와 같이 최종복토층 끝단 사면부에서 다짐점토층의 포설이 어렵다는 문제점이 있다. 따라서 본 연구에서는 토목합성물질 사이에 차수성이 뛰어난 벤토나이트를 삽입한 토목합성수지점토라이너(Geosynthetic Clay Liner; GCL)를 다짐점토층 대신 적용하여 최종복토 끝단 사면부에서 차단층으로서의 적용가능성을 평가해 보고자 HELP 분석과 사면에서의 안정성 검토, 환경적 내구성 검토를 수행하였다. 그 결과 GCL이 기존의 다짐점토층보다 안정된 결과를 나타내고 있어 GCL을 최종복토의 차단층으로서 사용하도록 제안하고자 한다.

  • PDF

부등침하 발생 시 SRSL이 적용된 매립지 최종복토층의 침하 특성 검토 (Investigation on Differential Settlement Characteristics of the Final Landfill Cover Used SRSL)

  • 권오정;오명학;조완제;박준범
    • 한국지반신소재학회논문집
    • /
    • 제8권4호
    • /
    • pp.9-17
    • /
    • 2009
  • 본 연구는 폐기물 매립지에서 폐기물의 분해 등으로 인해 부등침하가 발생할 경우 SRSL(Self Recovering Sustainable Liner)를 활용한 매립지 최종복토층의 안정성에 미치는 영향을 확인해보는 것을 목적으로 한다. FLAC(Fast Lagrangian Analysis of Continua) 2D 프로그램을 이용하여 폐기물 분해 양상을 빈칸(blank)으로 설정한 후 수치해석을 수행하였으며, 기본 물성치시험 및 문헌조사 등을 통해 각 층에 대한 구성성분의 변수를 산정하였다. 이전 현장투수시험 등을 통해 얻어진 파괴 시 안전균열폭(6mm)을 바탕으로 부등침하 발생 시 부등침하의 폭, 깊이, 개수별 매립지 최종복토층의 침하량을 산정하여 부등침하에 대한 구조적 안정성을 검토하였다. 해석결과, 깊이에 따른 영향은 없으며, 침하갯수가 증가할수록 오히려 매립지 최종복토층에 인장력을 발휘하여 안정성 확보를 유리하게 하며, 부등침하의 폭이 전체길이에 24.5% 이내일 경우 안정성에는 문제가 없는 것을 확인하였다.

  • PDF

SRSL(Self Recovering Sustainable Liner)재의 매립지 최종복토층에 대한 활용성 검토 (Applicability of SRSL(Self-Recovering Sustainable Liner) to the Landfill Final Cover System)

  • 권오정;서민우;홍수정;박준범;박수영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.453-460
    • /
    • 2004
  • To prevent penetration of rainwater into the landfill site is the main purpose of the final cover in landfill sites. Conventional designs of landfill covers uses geotextiles such as geomembrane and GCL, and clay liners to lower the permeability of final covers of landfill sites. However, differential settlement and the variation of temperature in landfill sites cause the development of cracks or structural damage inside the final cover and it is also difficult to obtain clay - the main material of the compacted clay liner in Korea. Thus the former final cover system that suggests geomembrane and GCL or compacted clay liner has several limitations. Therefore, an alternative method is necessary and one of them is the application of SRSL(self-Recovering Sustainable Liner) material. SRSL is two different layers consist of individual materials that react with each other and form precipitates, and with this process lowers the permeability of the landfill final cover. SRSL generally is made up of two layers, so that when a internal crack occurs the reactants of the two layers migrate towards the crack and heal it by forming another liner. In this study the applicability of SRSL material for landfill final cover was examined by performing; (1) jar test to verify the formation of precipitate in the mixture of each reactants, (2) falling head test considering the field stress in order to confirm the decrease of permeability or prove that the hydraulic condctivity is lower than the regulations, (3) compression tests to judge weather if the strength satisfies the restricts for landfills, (4) freeze/thaw test to check the applicability of SRSL for domestic climate. In addition, the application of waste materials in the environmental and economical aspect was inspected, and finally the possibility of secondary contamination due to the waste materials was examined by performing elution tests.

  • PDF

SRSL(Self Recovering Sustainable Liner)재의 매립지 최종복토층에서균열 손상 시 치유 능력 검토 (Evaluating the recovering capacity of cracked SRSL in the landfill final cover)

  • 백현욱;하민기;권오정;박준범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1412-1419
    • /
    • 2005
  • Preventing the infiltration of rainwater into the landfill site is the main purpose of the final cover in landfill sites. Compacted clay layer or geomembrain have been used as a conventional landfill final cover. But they have several disadvantages when damages might occur due to puncturing, differential settlement and desiccation or freeze and thaw. For this reason, as an alternative method SRSL(Self Recovering Sustainable Liner) has been developed. Adopting the precipitation reaction of two chemical material, by forming precipitates that fill the pores, and lower the overall permeability of the liner. The advantage of this method is that when fracture of the liner occurs the remaining reactants of the two layers form precipitates that fill the fracture and recover the low permeability of the liner. In this study, the recovering ability of the SRSL with a crack due to the seasonal variation or differential settlements was investigated by permeability tests. And in order to estimate the durability of the SRSL after freeze/thaw and desiccation, uniaxial compression strength tests were performed.

  • PDF

Estimation of CH4 oxidation efficiency in an interim landfill cover soil using CO2/CH4 ratios

  • Park, Jin-Kyu;Lee, Won-Jae;Ban, Jong-Ki;Kim, Eun-Cheol;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • 제20권2호
    • /
    • pp.191-197
    • /
    • 2015
  • The first objective of this study was to discuss the applicability of the $CO_2/CH_4$ ratio method in order to assess $CH_4$ oxidation efficiency. To achieve this objective, a comparison between $CO_2/CH_4$ ratios and the mass balance method was conducted. The second objective of this study was to estimate the $CH_4$ oxidation efficiency in an interim landfill soil cover and assess how a $CH_4$ influx influences the $CH_4$ oxidation efficiency. The results showed that despite the $CO_2$ problems brought by respiration, the $CH_4$ oxidation efficiencies obtained by the $CO_2/CH_4$ ratio method led to similar results compared to the mass balance method. In this respect, the $CO_2/CH_4$ ratio method can be an indicator of the $CH_4$ oxidation efficiencies for landfill cover soils. The $CH_4$ oxidation efficiencies derived in this study through the $CO_2/CH_4$ ratio method ranged between 46% and 64%, and between 41% and 62% through the mass balance method. The results imply that the Intergovernmental Panel on Climate Change's (IPCC) default value of 10% for the $CH_4$ oxidation efficiency is an underestimation for landfill cover soils. $CH_4$ oxidation efficiency tends to be negatively correlated with $CH_4$ influx. Therefore, $CH_4$ influx reaching a landfill cover should be limited in order to increase the $CH_4$ oxidation efficiency.