• Title/Summary/Keyword: Land-use Factors

Search Result 650, Processing Time 0.027 seconds

Spatial Environment Planning for Ecological Environment Conservation - Centering on an Area in the Gyeonggi Province - (생태환경 보전을 위한 공간환경계획 수립방안 - 경기도 일원에의 사례 적용 -)

  • Choi, Hee-Sun;Park, Ju-hyeon;Kim, Hyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.1
    • /
    • pp.22-34
    • /
    • 2011
  • In recent years, there has been an active movement toward databasing, systematizing, and unifying environmental information. Such efforts facilitate the utilization of spatial environment planning in environment conservation officially planned at the metropolitan and provincial levels. This in turn clarifies the management direction of space, thereby serving as an effective tool with which to not only conserve land, but also provide a reasonable compromise to all the related solutions at odds with one another. As such, this study forwards a method for inclusion of spatial environment planning in environment conservation plans, paying particular attention to the place, with in such a planning method, of the natural ecosystem, arguably the most sensitive arena among environmental factors. Spatial environment planning can be broadly divided as follows: first, basic direction; second, collection of spatial information; third, compilation of status of spatial environment; and fourth, management strategy for spatial environment. In particular, the second phase, namely the collection of spatial information, delineates clearly spatial information hitherto amassed by government agencies at both the national and local levels; the ensuing lists facilitate maximum utilization of the previously accumulated data. Used during the planning phase, status maps should include not only the status of land use(land cover), but also systematic data on the superior resources of the natural ecosystem as well as the status of the given spatial environment. Establishing plans for ecological networks, their conservation, and restoration areas based on the aforementioned aspects, this study sought to formulate ways in which to spatialize environment conservation plans that encompass consideration for the natural ecosystem. Devised based previous studies and examples, the compilation of status and plans as stated, applied to Gyeonggi Province, afforded an examination of the potential applicability and usability of the proposed plans. Ultimately, these will contribute not only to the establishment of plans encompassing consideration for the value and level of significance of the given natural ecosystem in spatial development planning, but also provide fundamental data for investigating appropriateness of plans and validity of location in any regional development plan.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

A Study on the Hydraulic Factors of Groundwater Level Fluctuation by Region in Jeju Island (제주도 지역별 지하수위 변동 요인에 대한 고찰)

  • Jeong, Jiho;Park, Jaesung;Koh, Eun-hee;Park, Won-bae;Jeong, Jina
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.257-270
    • /
    • 2022
  • This study evaluated the hydraulic factors contributing to the decreasing groundwater levels across Jeju island. Time-series data for groundwater level, precipitation, and groundwater usage and information on land use were acquired, and the correlations among them were analyzed to evaluate the causes of the decreasing groundwater. The effects of precipitation and groundwater usage on the fluctuations of groundwater level were quantified using response surface analysis and sensitivity analysis, and methods for groundwater quantity management by region were proposed. The results showed that the rate of groundwater decrease in the western region was larger than that in the eastern region. For the eastern region, the influence of precipitation was large and the rate of decrease in the groundwater level was relatively small. The geological formation of this part of the island and continuous seawater intrusion suggest that although the absolute amount of groundwater extracted for use was large, the decrease in the groundwater level was not seen to be great due to an increase in pressure by seawater intrusion. Overall, precipitation and groundwater usage had the greatest effect on the amount of groundwater in the western region, and thus their data would be most useful for informing groundwater management, whereas other factors (e.g., sea level and the location of the freshwater-seawater transition zone) must be considered when understanding Jeju's eastern region. As the characteristics of groundwater level fluctuations in the eastern and western regions are distinct, an optimal management plan for each region should be proposed to ensure the efficient management of groundwater quantity.

Soil Loss and Pollutant Load Estimation in Sacheon River Watershed using a Geographic Information System (GIS를 이용한 동해안 하천유역의 토양유실량과 오염부하량 평가 -사천천을 중심으로-)

  • Cho, Jae-Heon;Yeon, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1331-1343
    • /
    • 2000
  • Through the integration of USLE and GIS, the methodology to estimate the soil loss was developed, and applicated to the Sacheon river in Gangrung. Using GIS, spatial analysis such as watershed boundary determination, flow routing. slope steepness calculation was done. Spatial information from the GIS application was given for each grid. With soil and land use map, information about soil classification and land use was given for each grid too. Based upon these data, thematic maps about the factors of USLE were made. We estimated the soil loss by overlaying the thematic maps. In this manner, we can assess the degree of soil loss for each grid using GIS. Annual average soil loss of Sacheon river watershed is 1.36 ton/ha/yr. Soil loss in forest, dry field, and paddy field is 0.15 ton/ha/yr, 27.04 ton/ha/yr, 0.78 ton/ha/yr respectively. The area of dry field, which is 4% of total area, is $2.4km^2$. But total soil loss of dry field is 6561 ton/yr, and it occupies 84.9 % of total soil loss eroded in Sacheon river watershed. Comparing with the 11.2 ton/ha/yr of an average soil loss tolerance for cropland, provision for the soil loss in dry field is necessary. Run-off and water quality of Sacheon river were measured two times in flood season: from July 24, 1998 to July 28 and from September 29 to October 1. As the run-off of the river increased, SS, TN, TP concentrations and pollutant loadings increased. SS, TN, TP loads of Sacheon river discharged during the 2 heavy rains were 21%, 39%, and 19% of the total pollutant loadings generated in the Sacheon river watershed for one year. We can see that much pollutants are discharged in short period of flood season.

  • PDF

Performance of Drip Irrigation System in Banana Cultuivation - Data Envelopment Analysis Approach

  • Kumar, K. Nirmal Ravi;Kumar, M. Suresh
    • Agribusiness and Information Management
    • /
    • v.8 no.1
    • /
    • pp.17-26
    • /
    • 2016
  • India is largest producer of banana in the world producing 29.72 million tonnes from an area of 0.803 million ha with a productivity of 35.7 MT ha-1 and accounted for 15.48 and 27.01 per cent of the world's area and production respectively (www.nhb.gov.in). In India, Tamil Nadu leads other states both in terms of area and production followed by Maharashtra, Gujarat and Andhra Pradesh. In Rayalaseema region of Andhra Pradesh, Kurnool district had special reputation in the cultivation of banana in an area of 5765 hectares with an annual production of 2.01 lakh tonnes in the year 2012-13 and hence, it was purposively chosen for the study. On $23^{rd}$ November 2003, the Government of Andhra Pradesh has commenced a comprehensive project called 'Andhra Pradesh Micro Irrigation Project (APMIP)', first of its kind in the world so as to promote water use efficiency. APMIP is offering 100 per cent of subsidy in case of SC, ST and 90 per cent in case of other categories of farmers up to 5.0 acres of land. In case of acreage between 5-10 acres, 70 per cent subsidy and acreage above 10, 50 per cent of subsidy is given to the farmer beneficiaries. The sampling frame consists of Kurnool district, two mandals, four villages and 180 sample farmers comprising of 60 farmers each from Marginal (<1ha), Small (1-2ha) and Other (>2ha) categories. A well structured pre-tested schedule was employed to collect the requisite information pertaining to the performance of drip irrigation among the sample farmers and Data Envelopment Analysis (DEA) model was employed to analyze the performance of drip irrigation in banana farms. The performance of drip irrigation was assessed based on the parameters like: Land Development Works (LDW), Fertigation costs (FC), Volume of water supplied (VWS), Annual maintenance costs of drip irrigation (AMC), Economic Status of the farmer (ES), Crop Productivity (CP) etc. The first four parameters are considered as inputs and last two as outputs for DEA modelling purposes. The findings revealed that, the number of farms operating at CRS are more in number in other farms (46.66%) followed by marginal (45%) and small farms (28.33%). Similarly, regarding the number of farmers operating at VRS, the other farms are again more in number with 61.66 per cent followed by marginal (53.33%) and small farms (35%). With reference to scale efficiency, marginal farms dominate the scenario with 57 per cent followed by others (55%) and small farms (50%). At pooled level, 26.11 per cent of the farms are being operated at CRS with an average technical efficiency score of 0.6138 i.e., 47 out of 180 farms. Nearly 40 per cent of the farmers at pooled level are being operated at VRS with an average technical efficiency score of 0.7241. As regards to scale efficiency, nearly 52 per cent of the farmers (94 out of 180 farmers) at pooled level, either performed at the optimum scale or were close to the optimum scale (farms having scale efficiency values equal to or more than 0.90). Majority of the farms (39.44%) are operating at IRS and only 29 per cent of the farmers are operating at DRS. This signifies that, more resources should be provided to these farms operating at IRS and the same should be decreased towards the farms operating at DRS. Nearly 32 per cent of the farms are operating at CRS indicating efficient utilization of resources. Log linear regression model was used to analyze the major determinants of input use efficiency in banana farms. The input variables considered under DEA model were again considered as influential factors for the CRS obtained for the three categories of farmers. Volume of water supplied ($X_1$) and fertigation cost ($X_2$) are the major determinants of banana farms across all the farmer categories and even at pooled level. In view of their positive influence on the CRS, it is essential to strengthen modern irrigation infrastructure like drip irrigation and offer more fertilizer subsidies to the farmer to enhance the crop production on cost-effective basis in Kurnool district of Andhra Pradesh, India. This study further suggests that, the present era of Information Technology will help the irrigation management in the context of generating new techniques, extension, adoption and information. It will also guide the farmers in irrigation scheduling and quantifying the irrigation water requirements in accordance with the water availability in a particular season. So, it is high time for the Government of India to pay adequate attention towards the applications of 'Information and Communication Technology (ICT) and its applications in irrigation water management' for facilitating the deployment of Decision Supports Systems (DSSs) at various levels of planning and management of water resources in the country.

Soil Moisture Influence on Growth of Cover Vegetations and Water Economy (토양수분(土壤水分)이 피복용식물(被覆用植物)의 생장(生長) 및 수분경제(水分經濟)에 미치는 영향(影響))

  • Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.33 no.1
    • /
    • pp.1-32
    • /
    • 1977
  • This study has been made to find out more effective way of vegetation establishment on severely denuded forest land from the viewpoint of soil moisture regimes. Various environmental factors were measured to estimate soil moisture conditions of different sites. Soil moisture influence on growth of over vegetations, water requirement and drought resistance were analyzed. The efficiency of water use was also reckoned at different fertility levels and different soil moisture conditions. This research is composed of field experiment and green house experiment. Field experiment includes height growth, survival and coverage analysis of cover vegetations (Robinia pseudoacacia L., Lespedeza bicolor Turcz, Arundinella hirta Tanaka var. ciliare Koidzumi.) with 4 fertility level treatments on 3 slopes (Steep: $37^{\circ}$, Moderate: $25^{\circ}$, Gentle; $17^{\circ}$) during dry season (1 April-30 June) and wet season (1 July-10 September). At the same time temperature, relative humidity and precipitation were measured to understand the environmental changes. Soil moisture conditions were measured with soil moisture meter with 24 soil cells. Green house experiment comprised height, fresh weight and dry weight measurements of cover vegetations with 4 fertility levels and 3 moisture conditions for 70 days. The results extracted from experiments are as follews. 1. Cover vegtations have 3 patterns of water requirement at the early stage of growth. a) Robinia type has high water requirement and weaker drought resistance. b) Lespedeza type has low water requirement and stronger drought resistance. c) Arundinella type has moderate water requirement and weaker drought resistance. 2. The vegetations have different optimum fertility levels in different soil moisture supply condition. a) Robinia needs a low fertility level in dry condition and a high level in wet condition. b) Lespedeza needs only low fertility level in all conditions. c) Arundinella needs a low fertility level in dry condition and a high level in wet condition. 3. The efficiency of water use (Water/1g dry weight) by fertility levels is different from one another. Robinia and Arundinella have a good efficiency at low fertility level in dry condition and at high fertility level in wet condition. Lespedeza has a good efficiency at low fertility level in all conditions. 4. $P_2O_5$ requirement of Robinia and Lespedeza is high, but that of Arundinella is low. Soil moisture condition has a great influence on $P_2O_5$ absorption in dendued forest land. Once Vegetations are established on suitable sites with optimum fertitity level according to different moisture condition, even the small amount of soil water in denuded land can he used with high efficiency and the effect of fertility treatment can be maximized.

  • PDF

R and K Factors for an Application of RUSLE on the Slope Soils in Kangwon-Do, Korea (강원도 경사지 토양 유실 예측용 신USLE의 적용을 위한 강수 인자와 토양 침식성 인자의 검토)

  • Jung, Yeong-Sang;Kwon, Young-Ki;Lim, Hyung-Sik;Ha, Sang-Keun;Yang, Jae-E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • Rainfall factor. R, and soil factor, K were estimated to use the Revised Universal Soil Loss Equation (RUSLE) to predict the amount of soil erosion from a land on slope in Kangwon-do, Korea. The average of R factor was 405 with a range from 251 to 601. The R factor differed among regions. The R factor at Taegwalryung, in the highland region, was 409 and those at Inje and Hongchon, in the mid mountainous regions, ranged from 310 to 493. The R factors at Wonju and Chuncheon, in the plain regions, ranged from 505 to 601. The R factors at Sokcho, Kangnung and Samchok, in the east coastal region, which ranged from 251 to 368, were lowee than those in the western part of the Taebaeg Mountains. The R factor during the winter including the effect of winter freezing and thawing was 12 to 30% of the annual average value in the east coastal and highland regions, while that in the western part of Taebaeg Mountains was lower than 7%. The average of K factor in the surface soil was 0.21 with a range from 0.06 to 0.42. The K factors of Odae and Weoljeong serieses were the lowest, while that of Imog was the highest. The average of K factor in the subsoil was 0.28 with a range from 0.07 to 0.45. The K factor of the subsoil was 1.3 times higher than that of top soil. The average of K factor in he soil including the effect of the gravel covering and percolation was 0.18 with a range from 0.03 to 0.33. In contrast. the K factor excluding the effect of the gravel covering was lower than this. The average of K factor in the frozen subsoil was 0.33, which was 1.6 times higher than that of the non frozen subsoil.

  • PDF

USLE/RUSLE Factors for National Scale Soil Loss Estimation Based on the Digital Detailed Soil Map (수치 정밀토양에 기초한 전국 토양유실량의 평가를 위한 USLE/RUSLE 인자의 산정)

  • Jung, Kang-Ho;Kim, Won-Tae;Hur, Seung-Oh;Ha, Sang-Keon;Jung, Pil-Kyun;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.199-206
    • /
    • 2004
  • Factors of universal soil loss equation, USLE, and its revised version, RUSLE for Korean soils were reevaluated to estimate the national scale of soil loss based on digital soil maps. Rainfall erosivity factor, R, of 158 locations of cities and counties were spacially interpolated by the inverse distance weight method. Soil erodibility factor, K, of 1321 soil phases of 390 soil series were calculated using the data of soil survey and agri-environmental quality monitoring. Topographic factor, LS, was estimated using soil map of 1:25,000 scale with soil phase and land use type. Cover management factor, C, of major crops and support practice factor, P, were summarized by analyzing the data of lysimeter and field experiments for 27 years (1975-2001) in the National Institute of Agricultural Science and Technology. R factor varied between 2322 and 6408 MJ mm $ha^{-1}$ $yr^{-1}$ $hr^{-1}$ and the average value was 4276 MJ mm $ha^{-1}$ $yr^{-1}$ $hr^{-1}$. The average K value was evaluated as 0.027 MT hr $MJ^{-1}$ $mm^{-1}$. The highest K factor was found in paddy rice fields, 0.034 MT hr $MJ^{-1}$ $mm^{-1}$, and K factors in upland fields, grassland, and forest were 0.026, 0.019, and 0.020 MT hr $MJ^{-1}$ $mm^{-1}$, respectively. C factors of upland crops ranged from 0.06 to 0.45 and that of grassland was 0.003. P factor varied between 0.01 and 0.85.

Present State and Conservation Counterplan for the Wetlands of the Tributaries around Namgang-River (남강 주변 습지의 보전 현황과 보전 대책)

  • Ha, Hye-Jeong;Oh, Kyung-Hwan
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.21-37
    • /
    • 2010
  • The abiotic factors and the vegetation naturalness of the 13 tributary wetlands around Namgang-River were assessed to investigate the present state and to present the conservation counter plan for the wetland ecosystem of the tributaries. Assessment indices for the abiotic factors were estimated based on the dominant land use types of the riparian zone, ecological function of the upper levee, levee slope structure, artificiality and utilization intensity of the waterfront, artificiality of the revetment structure, diversity of the substrate, and severance of the transverse. The assessment index of Omi-cheon is the highest among 13 tributaries. The second was Banseong-cheon and third was Hyangyang-cheon, followed by Nabul-cheon and Yeongcheon-gang and Sugok-cheon, Jungchon- cheon, and Daegok-cheon in their order and Munsan-cheon got the lowest assessment index. Assessment indices for the vegetation naturalness were estimated based on the vegetation diversity, exotic species dominance, annual herb dominance, naturalness and peculiarity of the vegetation, and species diversity. The assessment index of Omi-cheon is the highest among 13 tributaries. The second was Sugok-cheon and third was Banseong-cheon, followed by Yeongcheon-gang, Jungchon- cheon, Jinae-cheon, Nabul-cheon, and Jisu-cheon in their order, and Yonga-cheon got the lowest assessment index. The grades of the stream naturalness were estimated based on the the naturalness indices for the abiotic factors and the vegetation naturalness. The grades of Omi-cheon is the highest among 13 tributaries as the grade I. Those of Banseong-cheon, Sugok-cheon, Yeongcheon-gang, Nabul-cheon and Jungchon-cheon, Hyangyang-cheon, Jinae-cheon, Jisu-cheon, Daegok-cheone, and Munsan-cheon and Doksan-cheon were grade II in their order, and Yonga-cheon got the lowest as the grade III. It was suggested that restoration of the simple and flat substrate, create the natural vegetation on the levee slope constructed with concrete or stone wall, and rehabilitation of the eco-bridge were demanded to improve the grades of the stream naturalness through the restoration of the tributaries for the diverse aquatic wildlife, high vegetation diversity and species diversity with the vegetation consisted of perennial herbs and trees.

Study on the Selecting of Suitable Sites for Integrated Riparian Eco-belts Connecting Dam Floodplains and Riparian Zone - Case Study of Daecheong Reservoir in Geum-river Basin - (댐 홍수터와 수변구역을 연계한 통합형 수변생태벨트 적지 선정방안 연구 - 금강 수계 대청호 사례 연구 -)

  • Bahn, Gwonsoo;Cho, Myeonghyeon;Kang, Jeonkyeong;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.327-341
    • /
    • 2021
  • The riparian eco-belt is an efficient technique that can reduce non-point pollution sources in the basin and improve ecological connectivity and health. In Korea, a legal system for the construction and management of riparian eco-belts is in operation. However, it is currently excluded that rivers and floodplains in dam reservoir that are advantageous for buffer functions such as control of non-point pollutants and ecological habitats. Accordingly, this study presented and analyzed a plan to select a site for an integrated riparian ecol-belt that comprehensively evaluates the water quality and ecosystem characteristics of each dam floodplain and riparian zone for the Daecheong Dam basin in Geum River watershed. First, the Daecheong Dam basin was divided into 138 sub-basin with GIS, and the riparian zone adjacent to the dam floodplain was analyzed. Sixteen evaluation factors related to the ecosystem and water quality impact that affect the selection of integrated riparian eco-belt were decided, and weights for the importance of each factor were set through AHP analysis. The priority of site suitability was derived by conducting an integrated evaluation by applying weights to sub-basin by floodplains and riparian zone factors. In order to determine whether the sites derived through GIS site analysis are sutiable for actual implementation, five sites were inspected according to three factors: land use, pollution sources, and ecological connectivity. As a result, it was confirmed that all sites were appropriate to apply integrated riparian ecol-belt. It is judged that the riparian eco-belt site analysis technique proposed through this study can be applied as a useful tool when establishing an integrated riparian zone management policy in the future. However, it might be necessary to experiment various evaluation factors and weights for each item according to the characteristics and issues of each dam. Additional research need to be conducted on elaborated conservation and restoration strategies considering the Green-Blue Network aspect, evaluation of ecosystem services, and interconnection between related laws and policy and its improvements.