• Title/Summary/Keyword: Land-cover Classification

Search Result 431, Processing Time 0.03 seconds

An Application of Artificial Intelligence System for Accuracy Improvement in Classification of Remotely Sensed Images (원격탐사 영상의 분류정확도 향상을 위한 인공지능형 시스템의 적용)

  • 양인태;한성만;박재국
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • This study applied each Neural Networks theory and Fuzzy Set theory to improve accuracy in remotely sensed images. Remotely sensed data have been used to map land cover. The accuracy is dependent on a range of factors related to the data set and methods used. Thus, the accuracy of maps derived from conventional supervised image classification techniques is a function of factors related to the training, allocation, and testing stages of the classification. Conventional image classification techniques assume that all the pixels within the image are pure. That is, that they represent an area of homogeneous cover of a single land-cover class. But, this assumption is often untenable with pixels of mixed land-cover composition abundant in an image. Mixed pixels are a major problem in land-cover mapping applications. For each pixel, the strengths of class membership derived in the classification may be related to its land-cover composition. Fuzzy classification techniques are the concept of a pixel having a degree of membership to all classes is fundamental to fuzzy-sets-based techniques. A major problem with the fuzzy-sets and probabilistic methods is that they are slow and computational demanding. For analyzing large data sets and rapid processing, alterative techniques are required. One particularly attractive approach is the use of artificial neural networks. These are non-parametric techniques which have been shown to generally be capable of classifying data as or more accurately than conventional classifiers. An artificial neural networks, once trained, may classify data extremely rapidly as the classification process may be reduced to the solution of a large number of extremely simple calculations which may be performed in parallel.

Analysis of Land-cover Types Using Multistage Hierarchical flustering Image Classification (다단계 계층군집 영상분류법을 이용한 토지 피복 분석)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.135-147
    • /
    • 2003
  • This study used the multistage hierarchical clustering image classification to analyze the satellite images for the land-cover types of an area in the Korean peninsula. The multistage algorithm consists of two stages. The first stage performs region-growing segmentation by employing a hierarchical clustering procedure with the restriction that pixels in a cluster must be spatially contiguous, and finally the whole image space is segmented into sub-regions where adjacent regions have different physical properties. Without spatial constraints for merging, the second stage clusters the segments resulting from the previous stage. The image classification of hierarchical clustering, which merges step-by step two small groups into one large one based on the hierarchical structure of digital imagery, generates a hierarchical tree of the relation between the classified regions. The experimental results show that the hierarchical tree has the detailed information on the hierarchical structure of land-use and more detailed spectral information is required for the correct analysis of land-cover types.

A Study on Land Cover Map of UAV Imagery using an Object-based Classification Method (객체기반 분류기법을 이용한 UAV 영상의 토지피복도 제작 연구)

  • Shin, Ji Sun;Lee, Tae Ho;Jung, Pil Mo;Kwon, Hyuk Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.25-33
    • /
    • 2015
  • The study of ecosystem assessment(ES) is based on land cover information, and primarily it is performed at the global scale. However, these results as data for decision making have a limitation at the aspects of range and scale to solve the regional issue. Although the Ministry of Environment provides available land cover data at the regional scale, it is also restricted in use due to the intrinsic limitation of on screen digitizing method and temporal and spatial difference. This study of objective is to generate UAV land cover map. In order to classify the imagery, we have performed resampling at 5m resolution using UAV imagery. The results of object-based image segmentation showed that scale 20 and merge 34 were the optimum weight values for UAV imagery. In the case of RapidEye imagery;we found that the weight values;scale 30 and merge 30 were the most appropriate at the level of land cover classes for sub-category. We generated land cover imagery using example-based classification method and analyzed the accuracy using stratified random sampling. The results show that the overall accuracies of RapidEye and UAV classification imagery are each 90% and 91%.

A Study on the Land Use Classification of Seoul, Tajeon, Incheon Areas by Remote Sensing Technique (원격탐사 기법에 의한 서울, 대전, 인천지역 토지이용 분류연구)

  • 연상호
    • Korean Journal of Remote Sensing
    • /
    • v.2 no.2
    • /
    • pp.69-77
    • /
    • 1986
  • This study was emphasized on the land use classification by Remote Sensing Technique. Land cover maps about the major urbans, Seoul, Tajeon regions, its of each classified classes were extracted by use of Landsat MSS Data and Digital Image Processing System. From the results of this study, it was proved that land use classification by Remote Sensing technique could be used to obtain fully fruitful Results.

A Study on Object-Based Image Analysis Methods for Land Cover Classification in Agricultural Areas (농촌지역 토지피복분류를 위한 객체기반 영상분석기법 연구)

  • Kim, Hyun-Ok;Yeom, Jong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.26-41
    • /
    • 2012
  • It is necessary to manage, forecast and prepare agricultural production based on accurate and up-to-date information in order to cope with the climate change and its impacts such as global warming, floods and droughts. This study examined the applicability as well as challenges of the object-based image analysis method for developing a land cover image classification algorithm, which can support the fast thematic mapping of wide agricultural areas on a regional scale. In order to test the applicability of RapidEye's multi-temporal spectral information for differentiating agricultural land cover types, the integration of other GIS data was minimized. Under this circumstance, the land cover classification accuracy at the study area of Kimje ($1300km^2$) was 80.3%. The geometric resolution of RapidEye, 6.5m showed the possibility to derive the spatial features of agricultural land use generally cultivated on a small scale in Korea. The object-based image analysis method can realize the expert knowledge in various ways during the classification process, so that the application of spectral image information can be optimized. An additional advantage is that the already developed classification algorithm can be stored, edited with variables in detail with regard to analytical purpose, and may be applied to other images as well as other regions. However, the segmentation process, which is fundamental for the object-based image classification, often cannot be explained quantitatively. Therefore, it is necessary to draw the best results based on expert's empirical and scientific knowledge.

The Land Cover Changes at the Small Watersheds Using the Multi-temporal Satelite Images (다시기 위성영상을 이용한 소유역의 토지피복변화 평가)

  • Kang, Moon-Seong;Park, Seung-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.6 no.2 s.12
    • /
    • pp.50-58
    • /
    • 2000
  • The purposes of the study were to detect and evaluate the historical land use and land cover changes on the Balan watersheds from three thematic mapper (TM) data, which were taken in 1985, 1993, and 1996. The supervised and unsupervised classification methods were adopted to classify five land cover categories: Paddy, upland, forest, residential, and water. The results indicated residential areas increased significantly during the past eleven years, Forest and paddy were converted to the urban areas. Future land cover patterns were forecasted using a Markov chain method, and the simulated land coiler change ratios presented.

  • PDF

HyperConv: spatio-spectral classication of hyperspectral images with deep convolutional neural networks (심층 컨볼루션 신경망을 사용한 초분광 영상의 공간 분광학적 분류 기법)

  • Ko, Seyoon;Jun, Goo;Won, Joong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.859-872
    • /
    • 2016
  • Land cover classification is an important tool for preventing natural disasters, collecting environmental information, and monitoring natural resources. Hyperspectral imaging is widely used for this task thanks to sufficient spectral information. However, the curse of dimensionality, spatiotemporal variability, and lack of labeled data make it difficult to classify the land cover correctly. We propose a novel classification framework for land cover classification of hyperspectral data based on convolutional neural networks. The proposed framework naturally incorporates full spectral features with the information from neighboring pixels and has advantages over existing methods that require additional feature extraction or pre-processing steps. Empirical evaluation results show that the proposed framework provides good generalization power with classification accuracies better than (or comparable to) the most advanced existing classifiers.

Land Cover Classification Using Sematic Image Segmentation with Deep Learning (딥러닝 기반의 영상분할을 이용한 토지피복분류)

  • Lee, Seonghyeok;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.279-288
    • /
    • 2019
  • We evaluated the land cover classification performance of SegNet, which features semantic segmentation of aerial imagery. We selected four semantic classes, i.e., urban, farmland, forest, and water areas, and created 2,000 datasets using aerial images and land cover maps. The datasets were divided at a 8:2 ratio into training (1,600) and validation datasets (400); we evaluated validation accuracy after tuning the hyperparameters. SegNet performance was optimal at a batch size of five with 100,000 iterations. When 200 test datasets were subjected to semantic segmentation using the trained SegNet model, the accuracies were farmland 87.89%, forest 87.18%, water 83.66%, and urban regions 82.67%; the overall accuracy was 85.48%. Thus, deep learning-based semantic segmentation can be used to classify land cover.

Land Cover Classification Using Landsat TM with KOMPSAT-1 EOC and SCS-CN Direct Runoff Estimation (Landsat TM과 KOMPSAT-1 EOC 영상을 이용한 토지피복분류 및 SCS-CN 직접유출량 산정)

  • Kwon Hyong Jung;Kim Seong Joon;Koh Deuk Koo
    • KCID journal
    • /
    • v.7 no.2
    • /
    • pp.66-74
    • /
    • 2000
  • The purpose of this study is to obtain land cover classification map by using remotely sensed data : Landsat TM and KOMPSAT-1 EOC, and to estimate SCS-CN direct runoff by using point rainfall(Thiessen network) and spatial rainfall(surface interpolation) f

  • PDF

Flood Hazard Map in Kumagaya City

  • Tanaka, Seiichiro;Ogawa, Susumu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.763-765
    • /
    • 2003
  • We made a hazard map using GIS and remote sensing for he greatest inundation damage that happened for the 20th century. We calculated the land cover classification using Landsat from 1983 to 2000. We calculated it from a damage report and an aerial photo for a flood. We considered relation of both land cover classification and the damage. We expected the inundation damage in the future and made a hazard map.

  • PDF