With the advancements of deep learning, many semantic segmentation-based methods for land cover classification have been proposed. However, existing deep learning-based models only use image information and cannot guarantee spatiotemporal consistency. In this study, we propose a land cover classification model using geographical coordinates. First, the coordinate features are extracted through the Coordinate Hash Encoder, which is an extension of the Multi-resolution Hash Encoder, an implicit neural representation technique, to the longitude-latitude coordinate system. Next, we propose an architecture that combines the extracted coordinate features with different levels of U-net decoder. Experimental results show that the proposed method improves the mean intersection over union by about 32% and improves the spatiotemporal consistency.
This paper has dealt with a data fusion for the problem of land-cover classification using multisensor imagery. Dempster-Shafer evidence theory has been employed to combine the information extracted from the multiple data of same site. The Dempster-Shafer's approach has two important advantages for remote sensing application: one is that it enables to consider a compound class which consists of several land-cover types and the other is that the incompleteness of each sensor data due to cloud-cover can be modeled for the fusion process. The image classification based on the Dempster-Shafer theory usually assumes that each sensor is represented by a single channel. The evidential approach to image classification, which utilizes a mass function obtained under the assumption of class-independent beta distribution, has been discussed for the multiple sets of mutichannel data acquired from different sensors. The proposed method has applied to the KOMPSAT-1 EOC panchromatic imagery and LANDSAT ETM+ data, which were acquired over Yongin/Nuengpyung area of Korean peninsula. The experiment has shown that it is greatly effective on the applications in which it is hard to find homogeneous regions represented by a single land-cover type in training process.
This study compared the influence of water quality according to the data sources of spatial information. Firstly, land cover map was constructed through image classification of Daecheong-dam basin and the accuracy of image classification from satellite image showed high as 88.76% in comparison with the large-scaled land cover map in Ministry of Environment, to calculate Event Mean Concentration (EMC) by land cover that impact on the evaluation of nonpoint source pollutant loads. Also curve number and direct runoff were calculated by spatial overlay with soil map and land cover map from image classification. And Seokcheon and Daecheong-Dam basin showed high in the analysis of curve number and direct runoff. Samgacheon-Joint and Sokcheon-Downstream basin showed high in the nonpoint source pollutant loads of BOD from direct runoff and EMC. And Samgacheon-Joint and Bonghwangcheon- Downstream basin showed high in the nonpoint source pollutant loads of TN and TP. Nonpoint source pollutant loads from image classification were compared with those by the land cover map from Ministry of Environment to present the effectivity of nonpoint source pollutant loads from satellite image. And Daecheong-Dam Upstream basin showed high as 10.64%, 11.70% and 20.00% respectively in the errors of nonpoint source pollutant loads of BOD, TN, and TP. Therefore, it is desirable that spatial information including with paddy and dry field is applied to the evaluation of nonpoint source pollutant loads in order to simulate water quality of basin effectively.
Despite the rapid expansion of satellite images supply, the application of imagery is often restricted due to unautomated image processing. This paper presents the automated process for the selection of training areas which are essential to conducting supervised image classification. The training areas were selected based on the prior and cover information. After the selection, the training data were used to classify land cover in an urban area with the latest image and the classification accuracy was valuated. The automatic selection of training area was processed with following steps, 1) to redraw inner areas of prior land cover polygon with negative buffer (-15m) 2) to select the polygons with proper size of area ($2,000{\sim}200,000m^2$) 3) to calculate the mean and standard deviation of reflectance and NDVI of the polygons 4) to select the polygons having characteristic mean value of each land cover type with minimum standard deviation. The supervised image classification was conducted using the automatically selected training data with Sentinel-2 images in 2017. The accuracy of land cover classification was 86.9% ($\hat{K}=0.81$). The result shows that the process of automatic selection is effective in image processing and able to contribute to solving the bottleneck in the application of imagery.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.29
no.4
/
pp.429-438
/
2011
LiDAR technology is a combination of laser ranging, satellite positioning technology and digital image technology for study and determination with high accuracy of the true earth surface features in 3 D. Laser scanning data is typically a points cloud on the ground, including coordinates, altitude and intensity of laser from the object on the ground to the sensor (Wehr & Lohr, 1999). Data from laser scanning can produce products such as digital elevation model (DEM), digital surface model (DSM) and the intensity data. In Vietnam, the LiDAR technology has been applied since 2005. However, the application of LiDAR in Vietnam is mostly for topological mapping and DEM establishment using point cloud 3D coordinate. In this study, another application of LiDAR data are present. The study use the intensity image combine with some other data sets (elevation data, Panchromatic image, RGB image) in Bacgiang City to perform land cover classification using neural network method. The results show that it is possible to obtain land cover classes from LiDAR data. However, the highest accurate classification can be obtained using LiDAR data with other data set and the neural network classification is more appropriate approach to conventional method such as maximum likelyhood classification.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.242-242
/
2015
Monitoring the land cover changes in Nakdong River Basins using the multi-temporal remote sensing datasets is necessary for preserving properties in the river basins and monitoring the environmental changes in the river basins after the 4 major river restoration project. This research aims to monitor the land cover changes using the multi-temporal Landsat imageries and the airborne topographic LiDAR data. Firstly, the river basin boundaries are determined by using the LiDAR data, and the multiple river basin imageries are generated from the multi-temporal Landsat imageries by using the river basin boundaries. Next the classification method is employed to identify the multiple land covers in the generated river basin imageries. Finally, monitoring the land cover changes is implemented by comparing the differences of the same clusters in the multi-temporal river basin imageries.
Park, Seong-Jin;Lee, Chul-Woo;Kim, Seong-Heon;Oh, Taek-Keun
Korean Journal of Agricultural Science
/
v.47
no.4
/
pp.933-940
/
2020
Land-use change matrix data is important for calculating the LULUCF (land use, land use change and forestry) sector of the national greenhouse gas inventory. In this study, land cover changes in 2004 and 2019 were compared using the Wall-to-Wall technique with a land cover map of Sejong City from the Ministry of Environment. Sejong City was classified into six land use classes according to the Intergovernmental Panel on Climate Change (IPCC) guidelines: Forest land, crop land, grassland, wetland, settlement and other land. The coordinate system of the land cover maps of 2004 and 2019 were harmonized and the land use was reclassified. The results indicate that during the 15 years from 2004 to 2019 forestlands and croplands decreased from 50.4% (234.2 ㎢) and 34.6% (161.0 ㎢) to 43.4% (201.7 ㎢) and 20.7% (96.2 ㎢), respectively, while Settlement and Other land area increased significantly from 8.9% (41.1 ㎢) and 1.4% (6.9 ㎢) to 35.6% (119.0 ㎢) and 6.5% (30.3 ㎢). 79.㎢ of cropland area (96.2 ㎢) in 2019 was maintained as cropland, and 8.8 ㎢, 1.7 ㎢, 0.5 ㎢, 5.4 ㎢, and 0.4 ㎢ were converted from forestland, grassland, wetland, and settlement, respectively. This research, however, is subject to several limitations. The uncertainty of the land use change matrix when using the wall-to-wall technique depends on the accuracy of the utilized land cover map. Also, the land cover maps have different resolutions and different classification criteria for each production period. Despite these limitations, creating a land use change matrix using the Wall-to-Wall technique with a Land cover map has great advantages of saving time and money.
This paper presents a novel training data extraction approach using semi-supervised learning (SSL)-based classification without the analyst intervention for time-series land-cover mapping. The SSL-based approach first performs initial classification using initial training data obtained from past images including land-cover characteristics similar to the image to be classified. Reliable training data from the initial classification result are then extracted from SSL-based iterative classification using classification uncertainty information and class labels of neighboring pixels as constraints. The potential of the SSL-based training data extraction approach was evaluated from a classification experiment using unmanned aerial vehicle images in croplands. The use of new training data automatically extracted by the proposed SSL approach could significantly alleviate the misclassification in the initial classification result. In particular, isolated pixels were substantially reduced by considering spatial contextual information from adjacent pixels. Consequently, the classification accuracy of the proposed approach was similar to that of classification using manually extracted training data. These results indicate that the SSL-based iterative classification presented in this study could be effectively applied to automatically extract reliable training data for time-series land-cover mapping.
In recent years, urban development has expanded rapidly in Nawabshah City of Pakistan. A major effect associated with this population trend is transformation of the landscape from natural cover types to increasingly impervious urban land. The core objective of this study are to provide time-series information to define and measure the urban land cover changes of Nawabshah, Pakistan between the years 1992 and 2002, and to examine related urbanization impacts on air quality of the study area. Two multi-temporal Landsat images acquired in 1992 and 2002 together with standard topographical maps to measure land cover changes were used in this study. The image processing and data manipulation were conducted using algorithms supplied with the ERDAS Imagine software. An unsupervised classification approach, which uses a minimum spectral distance to assign pixels to clusters, was used with the overall accuracy ranging from 84 percent to 92 percent. Land cover statistics demonstrate that during the study period (1992-2002) extensive transformation of barren and vegetated lands into urban land have taken place in Nawabshah City. Results revealed that land cover changes due to urbanization has not only contaminated the air quality of the study area but also raised the health concerns for the local residents.
Journal of the Korean Society of Environmental Restoration Technology
/
v.10
no.2
/
pp.97-104
/
2007
A/R CDM(Afforestation/Reforestation Clean Development Mechanism) in Kyoto Mechanism means, either afforestation in the area used for other purposes more than 50 years or reforestation in the area used for other purposes on December 31st in 1989. South Korea has few sites due to the successful forestation in the past, but North Korea has not reforested the deforested lands since the mid-1970's. So these areas need to apply A/R CDM Project for restoration. The purposes of this study are to make a time series analysis in deforested areas and to estimate a feasibility of A/R CDM. To find the site satisfying A/R CDM business definition, land cover classification was applied using satellite images of the mid-1970's with good forestation, late 1980's including A/R CDM base year, and recent 2000's, and the chronological change was analyzed to categorize the possible sites. The North Korean topographical map of 1977 was used to verify land cover classification degree of 1970's, the land cover classification results made by the Ministry of Environment in 2000 were compared to verify the accuracy of 1980's results, and the land cover classification results in 2000's were verified by 2 site visits. The results of this study can be summarized as follows. The eligible A/R CDM sites are 605,156ha on the basis of the forestation change analysis in North Korea. Since the mid-1970's, 30.8% of the decreased forestation area of 1,966,306ha was classified into A/R CDM eligible sites. While other countries have the limited eligible sites, which has not been used for forestation since 1989 or which is being scattered, North Korea has large scale sites. Deforested sites are mainly around road and residential area, consequently give better accessibility for forestation than other countries. In conclusion, it is found that North Korea can provide efficient site for applying A/R COM Project to forestation restoring deforested land because of easy accessibility and existence of many possible sites due to artificial deforestation. Also, it is meaningful that the study suggests the application possibility of A/R COM Project to restore deforested land in North Korea and the related basic information through the chronological classification of the mid-1970's with good forestation, the late-1980's including A/R COM base year, and recent 2000's. It is expected that the study contributes to revitalization of A/R CDM Project and related research on North Korea forestation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.