• Title/Summary/Keyword: Land-and sea-based wind turbines

Search Result 2, Processing Time 0.016 seconds

The Steady-State Characteristic Analysis of 2MW PMSG based Direct-Drive Offshore Wind Turbine (2MW급 해상용 영구자석 직접 구동형 풍력 발전기의 정상상태 특성 해석)

  • Shin, Pyungho;Choi, Jungchul;Yoo, Chul;Kim, Daejin;Kyong, Namho;Ko, Heesang
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.9-16
    • /
    • 2015
  • In order to support various studies for assessment of onshore and offshore wind turbine system including foundations, the land-based version of 2MW PMSG direct drive wind turbine has been analyzed using HAWC2 that account for the coupled dynamics of the wind inflow, elasticity, and controls of the turbine. this work presents the steady-state response of the system and natural frequency of the first thirteen structure turbine modes as a function of wind speed. Rotor, generator speeds, pitch angle, power production, thrust force, deflections of tower and blade are compared for one case below and one case above the rated wind speed.

Evaluation of Wind Turbine Efficiency of Haengwon Wind Farm in Jeju Island based on Korean Wind Map (풍력-기상자원지도에 기반한 제주 행원 풍력발전단지 효율성 평가)

  • Byon, Jae-Young;Kang, Mi-Sun;Jung, Hyun-Sook
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.633-644
    • /
    • 2013
  • This study evaluates wind farm efficiency at Haengwon in Jeju Island. The actual energy production at Haengwon wind farm is compared with the estimated energy production based on Korean wind map which is developed at the National Institute of Meteorological Research/KMA. The validation of wind map at Gujwa located near the Haengwon wind farm shows that the wind speed is overestimated. The diurnal variation of wind speed shows a maximum value in the afternoon due to the effect of sea-land breeze. The ratio of the actual energy production at Haengwon wind farm and the estimated energy production based on the Korean wind map is 24.8%, while the distribution of energy frequency is similar each other. The difference of energy production is caused by mechanical error of the turbine and the overestimation of the simulated wind map. This study will contribute to the repowering of turbines for improving the efficiency of wind farm in the future.